НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ ІНСТИТУТ МЕХАНІКИ ім. С.П. ТИМОШЕНКА МИКОЛАЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ім. В.О. СУХОМЛИНСЬКОГО

На правах рукопису

Борисенко Максим Юрійович

УДК 539.3

ВИЗНАЧЕННЯ ДИНАМІЧНИХ ХАРАКТЕРИСТИК ВІЛЬНИХ КОЛИВАНЬ ЦИЛІНДРИЧНИХ ОБОЛОНОК РІЗНИХ ПОПЕРЕЧНИХ ПЕРЕРІЗІВ НА ОСНОВІ ЧИСЕЛЬНО-ЕКСПЕРИМЕНТАЛЬНИХ МЕТОДІВ

01.02.04 – механіка деформівного твердого тіла

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук

> Науковий керівник член-кореспондент НАПН України, доктор технічних наук, професор Будак Валерій Дмитрович

3MICT

ВСТУГ	I
РОЗДІЛ	П 1. ОГЛЯД ДОСЛІДЖЕНЬ З РОЗВ'ЯЗАННЯ ЗАДАЧ ПРО
ВІЛЬН	І КОЛИВАННЯ ЦИЛІНДРИЧНИХ ОБОЛОНОК З РІЗНИМ
ΠΟΠΕΙ	РЕЧНИМ ПЕРЕРІЗОМ
1.1	Загальна характеристика підходів до розв'язування задач про
	вільні коливання циліндричних оболонок
1.2.	Аналітичні та чисельні методи розв'язання задач про вільні
	коливання циліндричних оболонок
1.3.	Експериментальні методи
1.4.	Дослідження вільних коливань циліндричних оболонок з різним
	поперечним перерізом
Висн	ювки до першого розділу
РОЗДІЛ	П 2. ПОСТАНОВКА ЗАДАЧ ПРО ВІЛЬНІ КОЛИВАННЯ
НЕКРУ	ТОВИХ ЦИЛІНДРИЧНИХ ОБОЛОНОК ТА МЕТОДИ ЇХ
PO3B'S	ЯЗУВАННЯ
2.1.	Основні співвідношення класичної теорії оболонок
2.2.	Постановка задач про вільні коливання циліндричних оболонок
	з різним поперечним перерізом
2.3.	Співвідношення методу скінченних елементів в задачах
	динаміки
2.4.	Огляд програми FEMAP
2.5.	Експериментальне визначення частот та форм вільних коливань
	методом голографічної інтерферометрії
	2.5.1. Основні принципи голографічної інтерферометрії
	2.5.2. Апаратура і обладнання для забезпечення голографічного
	експерименту
Висн	ювки до другого розділу
РОЗДІЈ	П 3. РОЗВ'ЯЗУВАННЯ ЗАДАЧ ПРО ВІЛЬНІ КОЛИВАННЯ
ЦИЛІН	ДРИЧНИХ ОБОЛОНОК З РІЗНИМ ПОПЕРЕЧНИМ

ПЕРЕРІЗОМ НА ОСНОВІ МЕТОДУ СКІНЧЕННИХ ЕЛЕМЕНТІВ		57
3.1.	Оцінка достовірності отриманих результатів розрахунку	57
3.2.	Розрахунок частот та форм вільних коливань кругової	
	циліндричної оболонки при різних граничних умовах	65
3.3.	Розрахунок частот та форм вільних коливань некругової	
	циліндричної оболонки при різних граничних умовах	75
3.4.	Розрахунок частот та форм вільних коливань консольно	
	закріплених циліндричних оболонок еліптичного поперечного	
	перерізу з різних матеріалів	85
3.5.	Розрахунок частот та форм вільних коливань консольно	
	закріпленої некругової циліндричної оболонки змінної товщини	87
	3.5.1. Випадок зміни товщини за лінійним законом вздовж	
	твірної	87
	3.5.2. Випадок зміни товщини вздовж дуги контуру	
	поперечного перерізу	88
3.6.	Розрахунок частот та форм вільних коливань консольно	
	закріплених циліндричних оболонок еліптичного поперечного	
	перерізу еквівалентної маси з різним значенням	
	ексцентриситету	92
Висн	ювки до третього розділу	94
РОЗДIJ	П 4. ЕКСПЕРИМЕНТАЛЬНЕ ВИЗНАЧЕННЯ ЧАСТОТ ТА	
ФОРМ	ВІЛЬНИХ КОЛИВАНЬ МЕТОДОМ СТРОБОГОЛОГРАФІЧНОЇ	
IHTEP	ФЕРОМЕТРІЇ	96
4.1.	Основні етапи проведення експерименту. Виготовлення та	
	підготовка об'єкту дослідження	96
4.2.	Експериментальне визначення частот та форм вільних коливань	
	консольно закріпленої кругової циліндричної оболонки	102
4.3.	Експериментальне визначення частот та форм вільних коливань	
	консольно закріпленої циліндричної оболонки еліптичного	
	поперечного перерізу сталої товщини	108

4.4. Експериментальне визначення частот та форм вільних коливань	
консольно закріпленої циліндричної оболонки еліптичного	
поперечного перерізу змінної товщини вздовж дуги контуру	
поперечного перерізу	113
Висновки до четвертого розділу	120
ЗАГАЛЬНІ ВИСНОВКИ	121
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	123

ВСТУП

Актуальність теми. Сучасні оболонкові конструкції залежно від їх функціонального призначення і умов експлуатації мають, як правило, геометрично складну поверхню, некругові багатозв'язні контури перерізу, змінну товщину та інші особливості. Прикладами таких конструкцій є зерносховища, сховища для горючих та інших промислових речовин, атомні реактори, корпуси надводних і підводних кораблів, літальних і космічних апаратів, об'єкти будівельної і хімічної промисловості та інші різноманітні інженерні споруди. Раціональне проектування таких споруд пов'язане з дослідженням їх міцності та стійкості. Не менш важливим є визначення частот вільних коливань, особливо при дії змінного навантаження, оскільки при співпаданні частоти зовнішньої сили з власною частотою деталі або конструкції спостерігається руйнівне явище резонансу. Необхідність вивчення частот та форм вільних коливань пояснюється тим, що в теперішній час у зв'язку з розвитком техніки постійно підвищуються потужності і швидкості машин і механізмів, які піддаються динамічним навантаженням або діють на конструкції, в яких вони встановлені. За характером дії динамічні навантаження відрізняються великою різноманітністю, В результаті чого їх наслідки можуть бути різними в залежності від місця прикладання і закону зміни навантаження.

Теоретичні дослідження коливань пов'язані зі значними труднощами реалізації математичної моделі та необхідністю розв'язання складної системи диференціальних рівнянь в частинних похідних із змінними коефіцієнтами, при розв'язанні якої спостерігається нестійкість розрахунку, втрата необхідного порядку даних обчислень. Відомі аналітичні розв'язки деяких крайових задач, що описують коливання некругових циліндричних оболонок, які можна застосовувати тільки в окремих випадках. Для дослідження цієї проблеми широко використовують системи автоматизованого конструювання (computer-aided engineering – CAE), спроможні які обчислювати конструкцію будь-якої форми завдяки застосуванню методу

елементів. Крім того, САЕ-системи дають скінченних користувачу можливість оцінити поведінку комп'ютерної моделі оболонкових елементів конструкцій в реальних умовах експлуатації, дати оцінку її несучої здатності без значних затрат часу та коштів. Однією з таких систем є пре- і постпроцесор для виконання інженерного аналізу методом скінченних елементів – Femap з розв'язувачем NX Nastran. Але основною перевіркою будь-якого 3 результатів розрахунків залишається тільки фізичний експеримент, чисельний аналіз представляє лише моделювання реальної конструкції і від того, наскільки вдала модель і математичний апарат, який реалізує цю модель, залежить відповідність результатам експериментальної перевірки. Чисельне та експериментальне визначення частот та форм вільних коливань некругових циліндричних оболонок, а також дослідження на цій основі закономірностей залежності відповідних динамічних характеристик від форми поперечного перерізу, характеру зміни товщини, граничних умов та фізико-механічних властивостей матеріалу є актуальною науковою проблемою сучасної механіки деформівного твердого тіла. Дослідженню цієї проблеми і присвячена дисертаційна робота.

Зв'язок роботи з науковими програмами, планами, темами. Дослідження, що проведені в дисертаційній роботі, виконано у відповідності з науковими темами: «Дослідження малих переміщень та деформацій елементів конструкції змінної товщини квазістатичному при та МНУ ім. В.О. Сухомлинського віброрезонансному навантажені» (№ ДР 0109U002261, 2009-2011); «Чисельне-експериментальне дослідження вільних коливань пластин та пологих оболонок змінної товщини в рамках МНУ класичної та уточненої теорії» ім. В.О. Сухомлинського (№ ДР 0112U000478, 2012-2014); «Дослідження механічної поведінки неоднорідних анізотропних елементів сучасних конструкцій складної структури за допомогою нових підходів на основі різних моделей» Інститут механіки ім. С.П. Тимошенка НАН України (№ ДР 0112U000249, 2012-2016).

Мета та завдання дослідження. Мету та завдання дослідження можна

сформулювати наступним чином:

 розробка ефективного чисельно-експериментального підходу до розв'язання задач динаміки циліндричних оболонок некругового поперечного перерізу сталої та змінної товщини;

 чисельне розв'язання задачі про визначення частот та форм вільних коливань некругових циліндричних оболонок методом скінченних елементів;

 визначення частот та форм вільних коливань некругових циліндричних оболонок методом стробоголографічної інтерферометрії;

 порівняльний аналіз результатів досліджень динамічних характеристик некругових циліндричних оболонок з еліптичним поперечним перерізом, отриманих на основі чисельного та експериментального підходів;

– встановлення залежності динамічних характеристик некругових циліндричних оболонок від значення ексцентриситету еліпса, який є формою поперечного перерізу, характеру зміни товщини оболонки, граничних умов, геометричних та механічних параметрів матеріалу.

Об'єктом дослідження є динамічна поведінка некругових циліндричних оболонок з еліптичними поперечними перерізами з різними геометричними та механічними параметрами та різними граничними умовами.

Предметом дослідження є спектр частот та форм вільних коливань циліндричних оболонок вказаного класу в залежності від характеру зміни товщини оболонки, граничних умов, геометричних та механічних параметрів матеріалу.

Методи дослідження. Дослідження проводились на основі класичної теорії оболонок. Експериментальні дослідження проводились методом стробоголографічної інтерферометрії. Чисельні дослідження проводились методом скінченних елементів, який реалізовано на програмному засобі Femap (угода № AC 12-60-NNU-589 від 25.10.2012, ліцензія №60046828).

Наукова новизна отриманих результатів полягає у наступних

положеннях, що виносяться на захист:

 розроблено ефективний чисельний підхід до розрахунку частот і форм вільних коливань циліндричних оболонок довільного поперечного перерізу сталої та змінної товщини при довільних граничних умовах, який базується на розв'язку рівнянь Лагранжа II роду в дискретній формі та скінченно-елементній апроксимації методом Ланцоша;

• розроблено ефективний експериментальний підхід до визначення динамічних характеристик консольно закріплених циліндричних оболонок змінної сталої та товшини основі безконтактного на методу стробоголографічної інтерферометрії, який дає можливість в реальному часі спостерігати інтерференційні картини коливань поверхні оболонок, точно встановлювати момент виникнення резонансу, вибрати необхідний режим віброзбудження, з достатнім ступенем достовірності досліджувати спектр частот і форм вільних коливань;

 проведено розв'язання задач про вільні коливання некругових циліндричних оболонок з еліптичним поперечним перерізом та досліджено залежність динамічних характеристик відповідних оболонок від геометричних і механічних параметрів, граничних умов; виявлено закономірності у розподілі частот і форм вільних коливань;

 для деяких консольно закріплених циліндричних оболонок сталої та змінної товщини проведено порівняльний аналіз чисельно та експериментально отриманих частот і форм вільних коливань.

Достовірність отриманих результатів забезпечується коректністю проведення експериментів та вимірювань; використанням апробованих чисельних методів і критерію практичної збіжності; узгодженням чисельних результатів з експериментальними; чисельними розв'язками тестових задач.

Практичне значення отриманих результатів. Реалізований у роботі чисельно-експериментальний підхід дає можливість досліджувати динамічні характеристики оболонкових конструкцій інших конфігурацій і може бути використаний для оцінки допущень побудованих інших теоретичних та експериментальних моделей, досліджень в науково-дослідних організаціях та конструкторських бюро, а також при аналізі поведінки конкретних конструктивних елементів, оскільки публікацій з даного питання мало.

Особистий вклад здобувача. У роботах [24, 25, 29, 35-38, 74, 85, 126, 127, 133], опублікованих у співавторстві з науковим керівником, дисертанту належить побудова геометрії досліджуваних оболонок, проведення розбиття різними типами скінченних елементів, розрахунок частот та форм вільних коливань за допомогою програмного засобу Femap, підготовка поверхні оболонки до експерименту, компонування оптичної схеми установки, вільних проведення експерименту, отримання частот коливань досліджуваних оболонок та фіксування інтерференційних картин; науковому керівнику В.Д. Будаку і науковому консультанту О.Я. Григоренку належать постановка задачі і обговорення результатів, отриманих чисельним та експериментальним методами; О.В. Бойчук брала участь у проведенні розрахунків у роботах [24, 25, 38, 126, 133]; В.В. Хоришко брав учать у проведенні експерименту [85].

У роботі [25] дисертантом досліджуються вільні коливання тонких ізотропних циліндричних оболонок еліптичного поперечного перерізу змінної товщини однакової маси на основі методу скінченних елементів. Порівнюються частоти при однакових формах коливань для оболонок однакової геометрії для трьох різних матеріалів.

У роботі [38] дисертантом проведено розрахунки частот та форм вільних коливань циліндричної оболонки еліптичного поперечного перерізу для різних значень її ексцентриситету зі збереженням маси методом скінченних елементів. Для оцінки достовірності отриманих результатів виконано порівняльний аналіз з даними, які були отримані експериментальним шляхом на основі методу голографічної інтерферометрії для конкретного значення ексцентриситету еліпса.

У роботі [85] дисертантом використовується методика голографічної інтерферометрії для визначення частот вільних коливань ізотропних

кругових циліндричних оболонок сталої і змінної товщини еквівалентної маси. Виявлено, що при малому числі півхвиль вздовж твірної резонансні частоти оболонки змінної товщини перевищують аналогічні частоти циліндричної оболонки сталої товщини при збереженні маси.

У роботі [126] дисертантом розглядаються вільні коливання тонкої ізотропної циліндричної оболонки еліптичного поперечного перерізу сталої товщини на основі методу скінченних елементів реалізованого на високопродуктивному програмному забезпечені для інженерного аналізу – Femap. Проводиться порівняльний аналіз чисельних результатів з отриманими експериментально.

У роботі [133] дисертантом визначаються частоти та форми вільних коливань тонких циліндричних оболонок кругового та еліптичного поперечного перерізу еквівалентної маси при різних граничних умовах на одному торці та вільному іншому. Отримані результати дають можливість керувати спектром частот вільних коливань оболонкових конструкцій для виключення їх з резонансного режиму за рахунок варіації граничних умов, що є однією з актуальних проблем дослідження міцності оболонкових конструкцій.

Апробація результатів дисертації. Основні результати дисертаційної роботи доповідались та обговорювались на:

1) Міжнародній науковій конференції «Математичні проблеми технічної механіки – 2011» (Україна, Дніпропетровськ, Дніпродзержинськ, 2011).

 XIII Всеукраїнській науково-методичній конференції «Сучасні проблеми фізико-математичних наук та підготовка фахівців у цій галузі» (Україна, Миколаїв, 2011).

 VII Міжнародній науковій конференції присвяченій 90-річчю від дня народження академіка НАН України Олександра Сергійовича Космодаміанського (Україна, Донецьк, Мелекіно, 2013).

4) XIV Всеукраїнській науково-методичній конференції присвяченій

100-річчю з дня заснування МНУ ім. В.О. Сухомлинського «Сучасні проблеми фізико-математичних наук та підготовка фахівців у цій галузі» (Україна, Миколаїв, 2013).

5) Міжнародній науковій конференції «Математичні проблеми технічної механіки – 2014» (Україна, Дніпропетровськ, Дніпродзержинськ, 2014).

6) Міжнародній науковій конференції «Математичні проблеми технічної механіки – 2015» (Україна, Дніпропетровськ, Дніпродзержинськ, 2015).

 Міжнародній науково-практичній конференції «Проблеми механіки та фізико-хімії конденсованого стану речовини» (Україна, Миколаїв, 2015).

У повному обсязі дисертація доповідалась і обговорювалась на науковому семінарі кафедри прикладних математики і механіки та Миколаївського інформатики механіко-математичного факультету національного університету ім. В.О. Сухомлинського (Миколаїв, 2015) під керівництвом доктора технічних наук, професора, ректора університету В.Д. Будака; науковому семінарі відділу обчислювальних методів Інституту механіки ім. С. П. Тимошенка НАН України (Київ, 2015) під керівництвом фізико-математичних професора, завідувача відділу доктора наук, обчислювальних методів О.Я. Григоренка; науковому семінарі за напрямком «Механіка оболонкових систем» при Інституті механіки ім. С. П. Тимошенка НАН України (Київ, 2015) під керівництвом доктора технічних наук, професора П.З. Лугового.

Публікації. Згідно результатів дисертації видано дванадцять праць, у тому числі п'ять статей у фахових журналах [36, 38, 85, 126, 133], які входять в перелік ДАК України, а також сім публікацій у збірниках матеріалів і праць конференцій [24, 25, 29, 35, 37, 74, 127].

Структура і обсяг дисертації. Дисертаційна робота складається зі вступу, чотирьох розділів основної частини, висновків та списку використаних джерел. Загальний обсяг дисертації становить 142 сторінки, в тому числі 79 рисунків, 18 таблиць, список використаних джерел із 192 найменувань на 20 сторінках.

Автор щиро вдячний науковому керівникові, члену-кореспонденту Національної академії педагогічних наук України, доктору технічних наук, професору Будаку Валерію Дмитровичу за постановку проблеми, корисні поради та допомогу при виконанні роботи. Щиру подяку автор також висловлює науковому консультанту, доктору фізико-математичних наук, професору Григоренку Олександру Ярославовичу за постійну увагу, консультації та допомогу при виконанні роботи.

РОЗДІЛ 1

ОГЛЯД ДОСЛІДЖЕНЬ З РОЗВ'ЯЗАННЯ ЗАДАЧ ПРО ВІЛЬНІ КОЛИВАННЯ ЦИЛІНДРИЧНИХ ОБОЛОНОК З РІЗНИМ ПОПЕРЕЧНИМ ПЕРЕРІЗОМ

1.1. Загальна характеристика підходів до розв'язування задач про вільні коливання циліндричних оболонок

На основі аналізу публікацій з теорії оболонок та розгляду її історії розвитку можна виділити в теорії оболонок два напрямки. Перший – класичний, оснований на виведенні рівнянь теорії оболонок з рівнянь теорії пружності, та другий – пов'язаний з прямими підходами до побудови теорії через моделювання деформівної поверхні оболонки та вивчення механіки цієї поверхні.

Перші намагання вивести рівняння теорії оболонок з рівнянь теорії пружності належать Генріху Ароному [164] в 1874 році. Використовуючи метод Кірхгофа, він вивів достатньо складні рівняння, однак вираз для енергії отримав такий самий, як в теорії пластин Кірхгофа. Відмінність полягала в енергії згину: замість кривизн деформованої пластини записувались різниці кривизн поверхні до та після деформації. Народження сучасної теорії пов'язане з роботами А. Лява [183], А Бессета [166] і Г. Лемба [179]. Результати Бессета і Лемба підтверджують теорію А. Лява. Відмітимо, що в роботі А. Лява [183] використовувався метод Кірхгофа – Герінга без посилань на гіпотезу Кірхгофа. У розгорнутому вигляді, враховуючи критику Бессета та Лемба, праця Лява була викладена в першому виданні II тому «Математическая теория упругости» в 1893 році [182]. В 1903 році вийшла «Натуральна философия» Томсона і Тета [156], саме вона вплинула на всю механіку в цілому. Автори спочатку формулюють гіпотези Кірхгофа та будують всю теорію пластин, а вже після цього наводять доведення гіпотез Кірхгофа. 3a методом такою схемою побудоване друге видання «Математическая теория упругости» (1906) А. Лява, в яке не включене доведення «гіпотез» методом Кірхгофа. Така структура відома всьому світові завдяки книзі [104]. Перше видання містить в собі набагато більшу кількість варіантів співвідношень пружності.

Значний вклад у розвиток теорії оболонок внесли С.А. Амбарцумян, В.В. Болотін, І.Н. Веку, В.З. Власов, І.І. Ворович, К.З. Галімов, І.Г. Гальоркін, А.Л. Гольденвейзер, Е.І. Григолюк, Н.А. Кільченський, А.І. Лур'є, Х.М. Муштарі, П.М. Нахді, В.В. Новожилов, П.М. Огібалов, Ю.Н. Работнов, Е. Ресснер, В.В. Соколовський, С.П. Тимошенко, К.Ф. Черних, І.Я. Штасрман, та інші.

Після створення теорії пружності першою роботою, яка розглядала теорії стержнів, пластин і оболонок та тримірні суцільні середовища з точки зору прямого підходу була книга Е. Коссера [169] в 1909 році. Протягом тривалого часу підхід Коссера залишався без уваги інших науковців, але починаючи з роботи Дж. Еріксена і К. Трусделла [171], починає інтенсивно розвиватися. Робота Коссера внесла великий вклад в механіку деформівного середовища, що відображається в широкому використанні його підходу в багатьох наукових працях.

Найбільш повно відображає прогрес в теорії оболонок робота А.І. Лур'є [102] 1940 року, в ній викладено основні рівняння теорії оболонок в тензорному вигляді, які побудовані на основі гіпотези Кірхгофа – Лява. Також важливими є роботи, опубліковані в 1943 році різними авторами: А.І. Лур'є [103], В.В. Новожиловим [119], Р.М. Фінкельштеном [120], всі ці роботи присвячені похибці гіпотези Кірхгофа – Лява. Задачі динаміки, основані на класичній моделі Кірхгофа – Лява, описуються системою диференціальних рівнянь параболічного типу і передбачають нескінченну швидкість поширення зсувних збурень. Докладний аналіз застосування такого підходу проведено в роботі [118] в рамках лінійної теорії пружності. Похибка застосування моделі Кірхгофа – Лява зростає із збільшенням відношення частки енергії, що накопичується при деформаціях поперечного зсуву, до повної енергії системи. Найбільш відчутно вона проявляється при розрахунку тришарових конструкцій, що мають низьку зсувну жорсткість у поперечних напрямках. Проблема уточнення класичних теорій пластин і оболонок, а також публікації з даної теми досить повно представлені в монографії [55]. Завершення побудови теорії типу Лява належить А.Л. Гольденвейзеру. Автор на основі асимптотичного аналізу рівнянь теорії пружності дав інші формулювання кінетичних та статичних «гіпотез», які відрізняється від гіпотез Кірхгофа – Лява. Він отримав нові співвідношення пружності, відмінні від співвідношень А.І. Лур'є, з урахуванням поперечного стиску оболонки [46, 49].

Розглядаючи некласичні підходи, необхідно відмітити теорію оболонок типу Тимошенко [191], яка враховує деформації поперечного зсуву. З іншими теоріями можна ознайомитись в оглядах Е.І. Григолюка і І.Т. Селезова [55]. Також до некласичних можна віднести теорії ребристих оболонок, багатошарових оболонок, сітчастих оболонок та біологічних мембран, огляди цих теорій можна знайти роботах [6, 76], [4, 7, 8, 54, 56, 57, 89, 98, 128, 135], [134] та [83] відповідно.

Важливим аспектом для дослідження оболонок є задача щодо визначення спектра частот та форм вільних коливань. Для вирішення даної проблеми побудовано безліч різних підходів та методик, з яких можна виділити аналітичні, чисельні та експериментальні методи. Саме ці методи будуть описані в огляді літератури даної дисертаційної роботи.

1.2. Аналітичні та чисельні методи розв'язання задач про вільні коливання циліндричних оболонок

Перші дослідження вільних коливань циліндричних оболонок відносяться до початку XX століття. У роботах [190, 55] представлені історичні огляди даного питання.

У зв'язку зі зростанням розмірів і швидкостей машин, вивчення коливань деталей і механізмів стає все більш і більш важливою проблемою в інженерній справі. Основною роботою в цьому напрямку стала робота С.П. Тимошенка [151], що вперше була опублікована в 1928 році і не

втратила актуальності і сьогодні, про що свідчить велика кількість перевидань, в тому числі і російською мовою. У книзі викладаються основи теорії коливань та її застосування до розв'язку технічних проблем з ілюстрацією різних прикладів. Також обговорюється і проблема вільних коливань, для знаходження частот яких застосовується метод Релея. Підкреслюється важливість вивчення вільних коливань деталей машин.

У період з 30-х до 50-х років дослідження коливань оболонок характеризуються основному розв'язуванням В конкретних задач. А. П. Філіппов [159] запропонував метод визначення частот коливань циліндричної оболонки, затисненої по краях. А.Н. Крилов на основі методу Фур'є вивчав вільні коливання порожнього циліндра та досліджував вплив резонансу [94]. Для вивчення вільних коливань порожнього циліндра застосовувалось лінійне рівняння 3i змінними коефіцієнтами, для розв'язування якого використовувались функції Бесселя. У 1953 році була опублікована робота В.Є. Бреславського [27], в якій наведено результати теоретичного та експериментального дослідження вільних коливань замкнутої кругової циліндричної оболонки.

Основні питання, пов'язані з проблемою вивчення вільних коливань пластин і оболонок розглядаються в монографії О.Д. Оніашвілі [125] і в довіднику В.С. Гонткевича [50]. Серед важливих зарубіжних робіт цього періоду, присвячених даній проблемі, можна відзначити наступні: Arnold R.N., Warburton G.B. Baron M.L., Bleich H.H. [163], [165], Greenspon J.F. [173], Yu Y.Y. [192] та ін.

У другій половині XX століття зацікавленість вчених до проблеми коливань пластин і оболонок значно посилюється. Сприяють цьому розвиток математичного апарату і теорії пружності. В.В. Болотін виділяє сучасні напрями в галузі динаміки пластин і оболонок, серед яких однією з перших важливих проблем називає вивчення спектру їх власних коливань [22]. Вивчення вільних коливань оболонок виділяється як окремий напрямок в динаміці. В.В. Болотін установив існування точок згущення власних частот у оболонок додатної, нульової і від'ємної кривизни Гауса та інші важливі властивості спектра частот вільних коливань оболонок [21]. Вивченню динамічної стійкості пружних систем і розвитку теорії коливань присвячені роботи В.В. Болотіна [20], І.М. Бабакова [10] та ін.

Огляд некласичних теорій коливань стержнів, пластин і оболонок представлений Е.І. Григолюком та І.Т. Селезовим в роботі [55]. Проаналізовано дослідження, опубліковані у радянській і зарубіжній літературі з вісімнадцятого століття до середини 1971 року, поставлені у відповідність результати аналізу різних динамічних теорій.

Вільним коливанням тонких пружних оболонок присвячена робота А.Л. Гольденвейзера [48]. Виходячи з класичних двовимірних рівнянь, досліджується спектр вільних коливань тонких циліндричних оболонок асимптотичним методом. Проведено дослідження характеристичного рівняння.

Зростання інтересу до вивчення динамічної поведінки оболонок спостерігається в останні три десятиліття. До оглядових робіт, присвячених динаміці тонких оболонок відносяться роботи A. Leissa [180], Markusa S. [184], Soedela W. [190].

Для розв'язку задач, пов'язаних з циліндричними оболонками змінної кривизни застосовують різні аналітичні та чисельні методи [69, 97, 115, 177, 175]. Для циліндричних оболонок з вільними краями перші частоти розподілені щільно [11, 21, 111, 116]. Тому чисельний розрахунок не завжди ефективний. Ці труднощі долають за допомогою застосування аналітичної та асимптотичної теорії, а також чисельними методами. Фундаментальною роботою, присвяченою вивченню вільних коливань оболонкових конструкцій, монографія Я.М. Григоренка, С.І. Беспалової, вважається А.Б. Китайгородського, А.І. Шинкаря [144]. У роботі наводяться рівняння, що описують вільні коливання оболонок на основі просторової теорії пружності в класичній та уточненій постановках. Розглянуто різні методи розв'язання задач про вільні коливання оболонок, які проілюстровані численними прикладами. Наведено аналіз спектра вільних коливань розглянутих оболонкових конструкцій.

У випадку теорії оболонок в уточненій постановці аналітичні методи дають можливість розв'язати тільки прості задачі, або знайти наближені розв'язки. Коло задач теорії оболонок, які можуть бути розв'язані аналітичними методами, суттєво обмежені через складність рівнянь, які описують їх напружено-деформований стан. У деяких випадках при отриманні кінцевого чисельного результату, навіть коли відомий точний розв'язок, виникають складності, які пов'язані з додаванням повільно збіжних рядів [157]. Складності, які виникають при розв'язку задач теорії оболонок та доведенні їх до конкретних результатів, викликали необхідність розробки різних спрощених прийомів. Більшість досліджень у цьому напряму охоплюють оболонки обертання сталої та змінної товщини стінки [157].

циліндричних Вільні коливання замкнутих кругових оболонок розглядаються в роботах М.В. Василенка [32, 33]. Проблемі вільних коливань просторових тіл з низьким порядком симетрії пружних властивостей присвячена робота [17]. С.І. Беспаловою і Г.П. Урусовою досліджувався спектр власних частот коливань неоднорідних оболонок обертання з урахуванням поперечних деформацій [18]. О.Я. Григоренко і Т.Л. Єфімова дослідження вільних коливань товстостінних ортотропних провели неоднорідних циліндрів [63, 75].

У роботі І.І. Петрушової [130] виконано дослідження власних частот і форм коливань пружних багатошарових ортотропних композитних оболонок обертання із загальним типом закріплення торців поверхонь в уточненій постановці на основі некласичної теорії Андрєєва – Немирівського.

У роботі F. Pellicano [187] розглянуті лінійні та нелінійні коливання кругових циліндричних оболонок при різних граничних умовах на основі теорії Сандерса – Койтера. Переміщення представлені подвійними рядами по гармонічних функціях і поліномами Чебишова. Проведено порівняння

результатів досліджень з експериментальними даними. Також у роботі дано огляд досліджень, пов'язаних з проблемою вивчення коливань циліндричних оболонок. В.Г. Карнауховим проведено дослідження гармонічних коливань циліндричної оболонки з фізично нелінійного п'єзоелектричного матеріалу [88].

Огляд сучасних досліджень динамічної поведінки оболонок на підставі різних підходів виконаний в роботі Qatu [188]. Виділено три основних аспекти досліджень: розвиток різних теорій оболонок, розгляд оболонок різної геометрії та методи дослідження поставлених задач динаміки. Відзначається, що найбільше досліджень присвячено вивченню динамічної поведінки циліндричних оболонок.

Динамічний пов'язаний **i**3 розрахунок конструкції зазвичай відстеженням розповсюдження збуджень, що викликають найбільші деформації. У зв'язку з цим, залежно від виду навантаження та параметрів конструкції, виникає необхідність в описі як швидкоплинних процесів, так і порівняно повільних. Чисельне моделювання перших ускладнене наявністю особливостей, пов'язаних з розривом розв'язків, що накладає жорсткі обмеження на величину кроку за координатами, моделювання довготривалих процесів обмежене великою тривалістю процесу, що, в свою чергу, накладає обмеження на величину допустимої апроксимаційної в'язкості схеми. Можливі також випадки, коли доводиться враховувати обидві ці особливості процесу одночасно. Вони становлять найбільшу складність для чисельної реалізації [106].

Задача визначення власних значень і власних векторів оператора осесиметричної оболонкової конструкції загального вигляду досить складна і точному розв'язанню не піддається. Цей факт став причиною широкого застосування для її розв'язування різних чисельних методів, таких, як метод скінчених різниць, метод скінченних елементів і метод чисельного інтегрування. Аналізу та перспективам використання чисельних методів у будівельній механіці оболонок присвячені оглядові статті [23, 30, 158, 19]. Метод чисельного інтегрування, який використовується для розв'язку крайових задач теорії оболонок обертань, представлений в роботах Г.Є. Голдберга [162, 172], А. Калнінса [177, 178], Г.А. Хошена [167, 168], Я.М. Григоренка [67], А.В. Кармішина, В.І. Мяченкова і А.Н. Фролова [73, 147], Н.В. Валішвілі [31], В.І. Феодосьева [157] та ін.

Алгоритми статичного розрахунку та розрахунку на вільні коливання однозв'язних осесиметричних оболонкових конструкцій, що реалізують метод чисельного інтегрування рівнянь теорії оболонок, заснованих на гіпотезах С.П. Тимошенко, опубліковані в роботах [5, 108]. Практичний інтерес представляє поширення такого підходу на розрахунки осесиметричних оболонкових конструкцій загального виду.

Метод дискретної ортогоналізації, запропонований С.К. Годуновим [42], дає можливість отримати стійкий обчислювальний процес за рахунок ортонормування векторів-розв'язків задач Коші в скінченому числі точок інтервалу зміни аргументу. Завдяки дослідженням Я.М. Григоренко [66, 67, 174], А.В. Кармішіна, В.І. Мяченкова, А.Н. Фролова [73, 147], Г.А. Хошена [168] метод дискретної ортогоналізації вдосконалений і приведений до універсального вигляду, дозволяє використовувати його ЩО при будівельної розв'язуванні широкого класу задач механіки. Роботи О.Я. Григоренка [58-62, 64] присвячені розв'язанню задач динаміки методом сплайн-колокації.

Метод скінченних різниць і метод скінченних елементів, засновані на принципі дискретизації реальної конструкції, орієнтовані на використання ЕОМ і дозволяють вирішувати широке коло завдань, проте, точність цих методів залежить від числа елементів, на які розбивається конструкція, а також від якості апроксимуючих функцій. Задача визначення частот і форм власних коливань зводиться до системи алгебраїчних рівнянь високого порядку, тому її розв'язування стає досить складною проблемою [139].

Для розв'язування задач динаміки оболонок і оболонкових конструкцій застосовуються різні модифікації скінченно-різницевих методів. При цьому перевага віддається однорідним схемам наскрізного розрахунку [150], що дозволяє проводити обчислення за одними й тими ж формулам як в зонах гладкого розв'язку, так і на розривах. Деяким питанням дослідження чисельної дисперсії і апроксимаційної в'язкості різницевих схем, а також питанням їх мінімізації присвячені роботи [1, 106]. Різницева схема дає найкращі результати, якщо вона залишає незмінними в межах кожної комірки ті величини, які зберігаються в розглянутому фізичному процесі. З цієї точки зору доцільно забезпечувати незмінність енергії, кількості руху і маси [142]. Консервативність схеми безпосередньо пов'язана з питаннями збіжності і стійкості розв'язку [44].

Консервативні варіаційно-різницеві забезпечують схеми, ЩО незмінність енергії, застосовуються в роботах В.Г. Баженова і його співавторів М.А. Батаніна, В.К. Ломунова, Г.С. Михайлова, А.П. Шинкаренка та ін. При цьому використовуються явні однорідні схеми типу «хрест» з апроксимацією другого порядку точності. У пружно-пластичній постановці з урахуванням геометричної нелінійності вищеназваними авторами розв'язано ряд одновимірних і двовимірних задач динаміки оболонкових конструкцій загального вигляду [6, 12, 13, 14, 132]. Перевагами варіаційно-різницевих схем є також симетричність матриці розв'язуючих рівнянь і природне граничних умов, ЩО не вимагає законтурних задовольняння точок. Апроксимаційна в'язкість в зазначених роботах спеціально не досліджується, однак, якщо аналізувати деякі їхні результати, то вона може бути істотно зменшена шляхом подрібнення сітки.

Інша консервативна різницева схема побудована і використана для розв'язування двовимірної задачі динаміки оболонок в роботі [72]. Вихідні рівняння руху представлені в інтегральному вигляді, який виражає закон збереження імпульсу. Різницеві рівняння отримані шляхом застосування інтегральних співвідношень до чотирикутних комірок області. У пружнопластичній постановці розв'язана задача про динамічну поведінку пологих циліндричних панелей навантажених хвилею тиску, яка набігає в поздовжньому напрямку.

При наявності розривних розв'язків найкращою, з точки зору стійкості та отримання чітких хвильових профілів, є різницева схема першого порядку точності С.К. Годунова [43-45]. Ця схема знайшла широке застосування при дослідженні хвильових процесів у пружних тілах [9, 105, 107].

Явна схема наскрізного розрахунку другого порядку точності, що забезпечує на обмеженому відрізку часу зниження сіткової в'язкості і помилкової осциляції, побудована і використана для розрахунку перехідних процесів в оболонкових конструкціях у роботі [106].

Крім однорідних різницевих наскрізного схем розрахунку використовуються способи інтегрування диференціальних рівнянь 3 виділенням фронтових розривів. У роботі [117] розриви виділяються за допомогою інтегральних перетворень із застосуванням асимптотичних методів перетворень. Далі алгоритм методу скінченних різниць модифікується таким чином, що на фронтах хвиль зберігається попередньо розраховані значення розривів.

Для чисельного моделювання хвильових процесів в динаміці оболонок, які засновані на гіпотезах Тимошенко, застосовується метод характеристик [44]. Більшість робіт по динаміці оболонок, що використовують метод характеристик, виконано на основі лінійної теорії [90, 140].

У роботах [109, 110] описаний алгоритм розв'язання лінійної одновимірної задачі динаміки багатозв'язних осесиметричних оболонкових конструкцій, в основу якого покладено метод переміщень у поєднанні з поперечною схемою методу прямих. Різницева апроксимація похідних по часу дозволяє на кожному часовому кроці звести алгоритм розв'язку задачі динаміки багатозв'язаної конструкції до вже розробленого і високоефективного алгоритму статичного розрахунку [116].

У роботі [115] для розв'язання одновимірної задачі динаміки пружних оболонок обертання (модель Тимошенка) використовується поздовжня схема методу прямих. Система нелінійних рівнянь руху зводиться до системи шести нелінійних диференційних рівнянь першого порядку по часу відносно узагальнених переміщень і швидкостей.

Метод скінченних елементів (МСЕ) добре представлено в монографіях та посібниках в авторстві В.П. Агапова [2], Р. Галлагера [40], Е. Мітчелла і Р. Уейта [113], В.І. Мяченкова, В.П. Мальцева, В.П. Майбороди та інших [136], І.Ф. Образцова, Л.М. Савел'єва і Х.С. Хазанова [124], Г. Стренга і Дж. Фикса [148], О. Зенкевича, К. Моргана [78].

Застосування МСЕ до розрахунку тонкостінних оболонкових конструкцій загального вигляду розцінюється як один з найбільш перспективних. Огляд результатів та перспектив розвитку МСЕ в динаміці оболонок представлені в роботах [131, 52, 79].

В роботі [51] наведено алгоритм розрахунку осесиметричної динаміки оболонкових конструкцій довільної геометрії, побудованого на основі нетрадиційної схеми МСЕ з використанням варіаційного принципу Гамільтона. Дискретизація варіаційного рівняння здійснюється згідно моментної схеми МСЕ [143]. В якості розв'язуючих функцій прийняті швидкості переміщень, апроксимація яких в межах скінченного елемента проводиться по полілінійному закону. На основі викладеної методики складений комплекс програм.

В останній час МСЕ набув широкого використання для розв'язування задач механіки завдяки розвитку програмних засобів таких як: FEMAP [139], ANSYS, ADINA, NASTRAN, PATRAN, ABAQUS, LS-DYNA, CATIA, PRO/ENGINEER, COSMOS, HyperWorks, FORTU, ЛИРА, МІРЕЛА [94] та інші.

1.3. Експериментальні методи

При проведенні експериментальних досліджень коливань оболонок використовують як контактні, так і безконтактні методи, серед яких виділяють тензометричний, акустичний і метод голографічної інтерферометрії. Особливо широко застосовуються традиційні методи, що пов'язані з визначенням деформації поверхні за допомогою тензорезисторів і тензорезисторних перетворювачів. Принцип їхньої дії базується на перетворенні приросту лінійних розмірів до відповідної бази пристрою вимірювання в фізичну величину, що зручна для підсилення і реєстрації. Детальний опис методики проведення тензометричного експерименту представлено у працях [71, 101, 129].

В акустичному методі для вимірювання динамічних характеристик оболонок використовують вимірювальний тракт, що складається із віброщупа звукових частот, струнного аналізатора і підсилювача, до якого підключають катодний і шлейфовий осцилографи [3, 53, 137]. Акустичний метод не вимагає значних підготовчих операцій, тому його зручно застосовувати як в стендових, так і в експлуатаційних умовах. При визначенні форм коливань акустичним методом виникають труднощі у розшифровці одержаних експериментальних даних.

Динамічні методи можна поділити на трансмісійно-хвильові і Трансмісійно-хвильові методи засновані на вимірюванні резонансні. швидкості поширення пружних хвиль у зразку як функції від пружних властивостей та густини матеріалу, а в загальному випадку від частоти хвилі (дисперсія) і геометричних параметрів зразка (геометрична дисперсія). Розрізняють імпульсні резонансні методи і резонансні методи з безперервним збудженням. Резонансні імпульсні методи засновані на збудженні коливань зразка за допомогою короткочасного (імпульсного) впливу, що має широкосмуговий амплітудно-частотний спектр, і реєстрації відгуку зразка. Обчислення спектру відгуку зразка дозволяє ідентифікувати резонансні частоти його коливань. Ці частоти залежать від геометричних розмірів і форми зразка, граничних умов, а також густини і пружних властивостей матеріалу. Як правило, використовуються граничні умови, близькі до вільних, у зв'язку з цим оптимальними є безконтактні збудження і реєстрація коливань, що дозволяють виключити вплив збудника і приймача на коливання зразка. Резонансні методи з безперервним збудженням засновані на збудженні коливань зразка за допомогою безперервного впливу з плавно змінною частотою та реєстрації розподілу амплітуди коливань по поверхні зразка. В якості одного з різновидів динамічних методів можна розглядати атомно-силову акустичну мікроскопію, засновану на зміні резонансної частоти кантилевера (назва конструкції мікромеханічного зонда) атомносилового мікроскопа (ACM) при його взаємодії з поверхнею досліджуваного зразка [189].

У статті [112] на основі резонансних методів розглядається задача розрахунку пружних постійних матеріалу за власними частотами коливань зразка у вигляді круглої пластини. На основі аналізу існуючих методів визначення пружних властивостей матеріалів показана перспективність застосування резонансних методів, що дозволяють виконувати безконтактний неруйнівний контроль. Показано ефективність розв'язування досліджуваної задачі за допомогою методу градієнтного спуску.

Дослідження властивостей нанооб'єктів, у тому числі вимірювання їхніх власних частот, в даний час здійснюється за допомогою зондової мікроскопії [80, 81]. Метод вимірювання власних частот, оснований на використанні АСМ, має свої обмеження і недоліки, які обумовлені розходженням між тим, що можна виміряти цим методом, і тим, що можна реально виміряти на сучасному обладнанні.

Одним із методів вимірювання частот нанооб'єктів є оптичний метод, який описано в роботах [121-123, 146]. Механічні аспекти цього методу полягають у наступному: досліджуваний об'єкт закріплюється на рамці макроскопічних розмірів і збуджується променем лазера, потім за допомогою іншого променя лазера фіксуються амплітуди коливань в деякій точці об'єкта, сигнал перетворюється в електричний, отримана спектрограма аналізується за допомогою спектрометра, в результаті чого визначаються власні частоти об'єкта.

У роботі [86] досліджується ефективність використання методу вільних

коливань для визначення резонансних частот і декрементів затухання власних механічних коливань складних технічних виробів, а також можливість підвищення частотної роздільності при обмеженій вибірці. Обраний метод може успішно застосовуватися до об'єктів складної конфігурації, при цьому не вимагає витратних матеріалів, підготовки поверхні і застосування складної апаратури [138].

Одними із ефективних методів дослідження вібрацій є метод голографічної інтерферометрії та спекл-інтерферометрії. Вони мають ряд суттєвих переваг у порівнянні з іншими експериментальними методами, які детально описані в книгах [34, 70].

Єдиний і закінчений розгляд теорії, практики та застосувань голографічної інтерферометрії, а також споріднених їй когерентних оптичних методів вимірювань представлено у [34]. Особливу увагу приділено кількісній обробці голографічних інтерферограм як прозорих, так і непрозорих об'єктів. Замість складних математичних викладок використано більш простий і зрозумілий фізичний підхід. Впродовж всієї книги наводяться практичні відомості і дані про джерела світла, реєструюче середовище, конструювання та створення голографічних систем, а також розглядаються деякі фізичні характеристики об'єктів. У книзі цитується близько 700 робіт, що безпосередньо стосуються даної тематики.

Розглядаючи публікації, присвячені застосуванню методу голографічної інтерферометрії для визначення динамічних характеристик оболонкових конструкцій, необхідно виділити роботи Шалабанова А.К. [96, 160, 161] і Золотого Ю.Г. [28, 65, 87]. Метод голографічної інтерферометрії для визначення власних частот та форм коливань лопаток компресора газотурбінного двигуна (ГТД) використовувався у [84, 114, 153, 155].

Теорія і застосування методів голографічної і спекл-інтерфгрометрії викладені в [70]. Автори вдало поєднують виклад основ теорії цих методів з розглядом конкретних задач. Перевагою книги є ґрунтовне обговорення методів електронної спекл-інтерферометрії. Практична важливість такого матеріалу обумовлена можливістю здійснення кореляції спеклів в реальному часі і можливістю виведення спекл-картини на ЕОМ або на екран відеоприймача без фотографічної реєстрації. При цьому автори не загальними аналізують обмежуються висновками, практичні схеми пристроїв, ЩО дозволяють реалізувати дані методи. Значна увага приділяється особливостям застосування цих методів для вивчення динаміки складних зсувів.

Метод електронної спекл-інтерферометрії використовувався для дослідження динамічних характеристик елементів ГТД у [152, 154].

1.4. Дослідження вільних коливань циліндричних оболонок з різним поперечним перерізом

З наведеного вище огляду, можна дійти висновку, що в сучасній науковій літературі досить повно представлені результати теоретичних та експериментальних досліджень динаміки кругових циліндричних оболонок, в порівнянні з цим проблема коливань циліндричних оболонок некругового поперечного перерізу вивчена недостатньо повно. Ще менше вивчені високочастотні коливання оболонок вказаного класу, коли доводиться при створенні математичної моделі враховувати модуляцію товщини оболонки.

Як наголошується в деяких роботах, проблема вивчення коливань зазначених оболонок пов'язана зі значними математичними труднощами, викликаними інтегруванням диференціальних рівнянь зі змінними коефіцієнтами. Останні виникають в рівняннях через зміну геометрії поперечного перерізу оболонки.

У роботах [47, 48] проводиться аналіз коливань циліндричної оболонки некругового поперечного перерізу, представлений розв'язок цієї задачі, отриманий за допомогою методу асимптотичного інтегрування. Цей метод успішно застосовувався при дослідженні коливань овальних замкнутих циліндричних оболонок в роботах Р.М. Бергмана [15, 16] та інших авторів.

Для розв'язування цієї ж задачі у [170] використовується метод Бубнова з представленням шуканих переміщень у вигляді подвійних тригонометричних рядів. Проводиться порівняння частотних параметрів для оболонок з круговим та овальним поперечним перерізом.

У [185] пропонується наближений метод (метод обернених матриць) для розв'язування задач про вимушені коливання циліндричної панелі з експоненціальною зміною кривизни. Вказується, що цей метод може бути застосований і до оболонок з іншими законами зміни кривизни. У [93] наводяться результати розрахунків по класичній теорії для оболонки з синусоїдальною зміною кривизни. Наводяться графіки для параметра частоти оболонки, що залежить від амплітуди і числа напівхвиль синусоїди.

Особливий інтерес представляє дослідження коливань циліндричних оболонок з перерізом у формі еліпса. Щоб уникнути труднощів цієї задачі, в більшості робіт [82, 91, 145] допускається представлення радіуса кривизни поперечного перерізу у вигляді ряду. У [39] вказується, що графічна залежність параметра частоти від хвильового числа вздовж дуги контуру перерізу оболонки еліптичного поперечного для при коливаннях, симетричних відносно вертикальної площини, подібний має ВИГЛЯД аналогічним залежностям для кругового циліндра.

З публікацій, в яких наводяться результати експериментальних досліджень, слід відзначити роботу Г. М. Сальнікова і А. Г. Сенюкова [141], де наведено кілька значень експериментальних форм і частот коливань для оболонки еліптичного перерізу. Експериментальне та теоретичне циліндричних оболонок дослідження власних частот еліптичного поперечного перерізу еквівалентної маси з різним відношенням півосей широко висвітлене у [149]. Отримані експериментально за допомогою повітряно-реактивного вібраційного грохоту власні частоти та форми коливань добре узгоджуються з теоретично розрахованими частотами за допомогою метода Релея-Рітца з урахуванням доданків вищих порядків в поздовжніх та колових модальних розкладах. Відзначається, що при ексцентриситеті е = 0,916, еліпса, який є формою поперечного перерізу циліндричної оболонки, значення частот зменшуються на 44% в порівнянні з частотами кругової циліндричної оболонки на відповідних формах [176].

У своїй статті Кузнєцов Ю.М. і Шалабанов А.К. [96] методом голографічної інтерферометрії визначили частоти і форми коливань циліндричних оболонок еліптичного поперечного перерізу з жорстко закріпленими краями з ексцентриситетом, який змінювався в межах від 0 до 0,944. У результаті проведених досліджень були отримані значення резонансних частот і відповідних форм коливань. На підставі отриманих результатів автори роблять висновки про те, що в циліндричних оболонках еліптичного перерізу спостерігається зниження частот основного тону зі збільшенням ексцентриситету. Для низькочастотного спектра коливань амплітуда в зонах меншої кривизни більша, а в зонах більшої кривизни.

У [95] розглядається наближений метод розв'язання задачі визначення власних частот коливань, шарнірно обпертих на торцях ортотропних циліндричних оболонок довільного поперечного перерізу по уточненій теорії.

У [189] досліджується питання поширення плоских хвиль типу Релея, затухаючих від вільного торця в напівнескінченній замкнутій некруговій циліндричній оболонці вздовж напрямку її твірної. Дослідження проводиться для ізотропної пружної напівнескінченної оболонки, коли жорсткість на згинання приймають рівною нулю (безмоментна оболонка).

У [59] розглядаються вільні коливання тонких ізотропних циліндричних оболонок еліптичного поперечного перерізу сталої товщини на основі методики сплайн-колокації. Виявлено, що при збереженні маси еліптичних і кругових циліндричних оболонок частоти вільних коливань циліндричних оболонок 3i збільшенням некругових спадають ексцентриситету перерізу оболонки.

У рамках двох скінченно-елементних реалізацій досліджені власні коливання тонкостінних конструкцій у [100]. У першій з них оболонка представлена як сукупність плоских елементів, що знаходяться одночасно під дією мембранних і згинальних сил. Друга заснована на рівняннях теорії пружності. Дискретизація області проводиться за допомогою 8-вузлового скінченного елемента з несумісними формами переміщень. В якості прикладів розглянуті циліндричні, еліптичні і відкриті оболонки. Проаналізовано вплив граничних умов і різних геометричних параметрів на власні частоти коливань. Виявлено переваги і недоліки кожного з підходів.

У [26] представлені дослідження динамічної поведінки тонкостінних містять ідеальну рідину, резервуарів. ШО 3 урахуванням ефектів гідропружних взаємодій та плескання вільної поверхні. На підставі модального аналізу представлена класифікація власних форм коливань вільної поверхні рідини у вертикальних резервуарах з круговим і еліптичним поперечними перерізами. Продемонстровано, що при наявності плескання можливе розділення спектру власних частот коливань системи, частоти коливань порожньої оболонки та з рідиною значно відрізняються одна від одної.

Висновки до першого розділу

На підставі поданого огляду досліджень, можна зробити наступні висновки:

- Задача про вільні коливання кругових циліндричних оболонок при різних граничних умовах та з різними особливостями в рамках теорії Кірхгофа – Лява дуже широко і активно обговорюється понад століття.
- 2. Дослідження частот форм вільних коливань та некругових циліндричних оболонок пов'язане зі значними труднощами реалізації математичної моделі та необхідністю розв'язання складної системи диференціальних рівнянь похідних i3 В частинних змінними

коефіцієнтами, тому є необхідним розробити ефективний підхід до розв'язування задач даного класу.

- Застосування методу скінченних елементів дозволяє провести достатньо точні розрахунки спектр частот і форм вільних коливань оболонок з різним поперечним перерізом та різним характером зміни товщини.
- Експериментальне дослідження спектру власних частот та форм коливань методом стробоголографічної інтерферометрії є перспективним, сучасним методом, який дозволяє провести дослідження оболонкових конструкцій різних конфігурацій.
- 5. Поєднання методу скінченних елементів з методом стобоголографічної інтерферометрії дозволить з достатнім ступенем точності дослідити спектр власних частот циліндричних оболонок некругового поперечного перерізу сталої та змінної товщини, що дасть змогу встановити ряд залежностей від форми поперечного перерізу, характеру зміни товщини, типу граничних умов та фізико-механічних властивостей матеріалу, що є актуальною науковою проблемою сучасної механіки деформівного твердого тіла.

РОЗДІЛ 2

ПОСТАНОВКА ЗАДАЧ ПРО ВІЛЬНІ КОЛИВАННЯ НЕКРУГОВИХ ЦИЛІНДРИЧНИХ ОБОЛОНОК ТА МЕТОДИ ЇХ РОЗВ'ЯЗУВАННЯ

2.1. Основні співвідношення класичної теорії оболонок

Коливання тонких оболонок розглядаються в рамках теорії Кірхгофа – Лява першого наближення. В ортогональних координатах (α, β, γ) диференціал квадрата довжини дуги має вигляд:

$$ds^{2} = H_{1}^{2} d\alpha^{2} + H_{2}^{2} d\beta^{2} + H_{3}^{2} d\gamma^{2}, \qquad (2.1)$$

де H₁, H₂, H₃ – коефіцієнти Ламе,

$$H_1 = A \left(1 + \frac{\gamma}{R_{\alpha}} \right), \quad H_2 = B \left(1 + \frac{\gamma}{R_{\beta}} \right), \quad H_3 = 1.$$
 (2.2)

Застосовуючи гіпотези Кірхгофа – Лява виразимо компоненти переміщення точок оболонки, що не лежать на координатній поверхні, через компоненти переміщення координатної поверхні:

$$u_{\alpha}(\alpha,\beta,\gamma) = u(\alpha,\beta) + \gamma \theta_{\alpha},$$

$$u_{\beta}(\alpha,\beta,\gamma) = v(\alpha,\beta) + \gamma \theta_{\beta}, \quad u_{\gamma}(\alpha,\beta,\gamma) = w(\alpha,\beta),$$

(2.3)

де $u(\alpha, \beta), v(\alpha, \beta), w(\alpha, \beta),$ – переміщення координатної поверхні в напрямках α, β, γ , відповідно, а \mathcal{G}_{α} і \mathcal{G}_{β} – кути повороту координатної поверхні в площинах $\alpha = const$ і $\beta = const$, відповідно, причому

$$\mathcal{G}_{\alpha} = -\frac{1}{A}\frac{\partial w}{\partial \alpha} + \frac{u}{R_{\alpha}}, \quad \mathcal{G}_{\beta} = -\frac{1}{B}\frac{\partial w}{\partial \beta} + \frac{\upsilon}{R_{\beta}}.$$
(2.4)

Величини *A* і *B* – коефіцієнти першої квадратичної форми вибраної координатної поверхні оболонки, що визначаються через прямокутні декартові координати за формулами:

$$A = \sqrt{\left(\frac{\partial x}{\partial \alpha}\right)^2 + \left(\frac{\partial y}{\partial \alpha}\right)^2 + \left(\frac{\partial z}{\partial \alpha}\right)^2}, \quad B = \sqrt{\left(\frac{\partial x}{\partial \beta}\right)^2 + \left(\frac{\partial y}{\partial \beta}\right)^2 + \left(\frac{\partial z}{\partial \beta}\right)^2}, \quad (2.5)$$

Приймаючи до уваги лінійний закон розподілу переміщень по товщині

(2.3), деформації $e_{\alpha}^{(\gamma)}, e_{\beta}^{(\gamma)}, e_{\alpha\beta}^{(\gamma)}$ можна подати у вигляді

$$e_{\alpha}^{(\gamma)} = \varepsilon_{\alpha}^{(\gamma)}(\alpha,\beta) + \gamma \kappa_{\alpha}(\alpha,\beta),$$

$$e_{\beta}^{(\gamma)} = \varepsilon_{\beta}^{(\gamma)}(\alpha,\beta) + \gamma \kappa_{\beta}(\alpha,\beta),$$

$$e_{\alpha\beta}^{(\gamma)} = \varepsilon_{\alpha\beta}^{(\gamma)}(\alpha,\beta) + \gamma 2 \kappa_{\alpha\beta}(\alpha,\beta),$$
(2.6)

де ε_{α} , ε_{β} , $\varepsilon_{\alpha\beta}$ і κ_{α} , κ_{β} , $\kappa_{\alpha\beta}$ – відповідно, компоненти тангенціальної і згинної деформацій, які виражаються через переміщення і кути повороту координатної поверхні таким чином:

$$\begin{split} \varepsilon_{\alpha} &= \frac{1}{A} \frac{\partial u}{\partial \alpha} + \frac{1}{AB} \frac{\partial A}{\partial \beta} \upsilon + \frac{w}{R_{\alpha}}, \quad \varepsilon_{\beta} = \frac{1}{B} \frac{\partial u}{\partial \beta} + \frac{1}{AB} \frac{\partial B}{\partial \alpha} u + \frac{w}{R_{\beta}}, \\ \varepsilon_{\alpha\beta} &= \frac{A}{B} \frac{\partial}{\partial \beta} \left(\frac{u}{A} \right) + \frac{B}{A} \frac{\partial}{\partial \alpha} \left(\frac{\upsilon}{B} \right), \\ \kappa_{\alpha} &= \frac{1}{A} \frac{\partial 9_{\alpha}}{\partial \alpha} + \frac{1}{AB} \frac{\partial A}{\partial \beta} 9_{\beta}, \quad \kappa_{\beta} = \frac{1}{B} \frac{\partial 9_{\beta}}{\partial \beta} + \frac{1}{AB} \frac{\partial B}{\partial \alpha} \partial 9_{\alpha}, \\ 2\kappa_{\alpha\beta} &= \frac{1}{A} \frac{\partial 9_{\beta}}{\partial \alpha} + \frac{1}{B} \frac{\partial 9_{\alpha}}{\partial \beta} - \frac{1}{AB} \left(\frac{\partial A}{\partial \beta} 9_{\alpha} + \frac{\partial B}{\partial \alpha} \partial 9_{\beta} \right) + \\ &+ \frac{1}{R_{\alpha}} \left(\frac{1}{B} \frac{\partial u}{\partial \beta} - \frac{1}{AB} \frac{\partial B}{\partial \alpha} \upsilon \right) + \frac{1}{R_{\beta}} \left(\frac{1}{A} \frac{\partial \upsilon}{\partial \alpha} - \frac{1}{AB} \frac{\partial A}{\partial \beta} u \right). \end{split}$$

$$(2.7)$$

де R_{α} , R_{β} – радіуси кривизни поверхні оболонки уздовж ліній кривизни.

Оскільки при деформаціях оболонки її координатна поверхня повинна залишатися суцільною та неперервною, то шість компонент деформації координатної поверхні оболонки в (2.7), які виражаються через три компоненти вектора переміщення, повинні задовольняти додатково рівняння неперервності або сумісності деформацій:

$$\frac{\partial}{\partial \alpha} (B\kappa_{\beta}) - \frac{\partial B}{\partial \alpha} \kappa_{\alpha} - \frac{1}{A} \frac{\partial}{\partial \beta} (A^{2}\kappa_{\alpha\beta}) + k_{2} \frac{\partial A}{\partial \beta} \varepsilon_{\alpha\beta} + k_{1} \left(-\frac{\partial}{\partial \alpha} (B\varepsilon_{\beta}) + \frac{\partial B}{\partial \alpha} \varepsilon_{\alpha} + \frac{\partial}{\partial \beta} (A\varepsilon_{\alpha\beta}) \right) = 0,$$

$$\frac{\partial}{\partial \beta} (A\kappa_{\alpha}) - \frac{\partial A}{\partial \beta} \kappa_{\beta} - \frac{1}{B} \frac{\partial}{\partial \alpha} (B^{2}\kappa_{\alpha\beta}) + k_{1} \frac{\partial B}{\partial \alpha} \varepsilon_{\alpha\beta} + k_{2} \left(-\frac{\partial}{\partial \beta} (A\varepsilon_{\alpha}) + \frac{\partial A}{\partial \beta} \varepsilon_{\beta} + \frac{\partial}{\partial \alpha} (B\varepsilon_{\alpha\beta}) \right) = 0,$$
(2.8)

$$\frac{1}{AB}\frac{\partial}{\partial\alpha}\left\{\frac{1}{A}\left[-\frac{\partial}{\partial\alpha}\left(B\varepsilon_{\beta}\right)+\frac{\partial B}{\partial\alpha}\varepsilon_{\alpha}+\frac{1}{2A}\frac{\partial}{\partial\beta}\left(A^{2}\varepsilon_{\alpha\beta}\right)\right]\right\}+$$
$$+\frac{1}{AB}\frac{\partial}{\partial\beta}\left\{\frac{1}{B}\left[-\frac{\partial}{\partial\beta}\left(A\varepsilon_{\alpha}\right)+\frac{\partial A}{\partial\beta}\varepsilon_{\beta}+\frac{1}{2B}\frac{\partial}{\partial\alpha}\left(B^{2}\varepsilon_{\alpha\beta}\right)\right]\right\}-k_{1}\kappa_{\beta}-k_{2}\kappa_{\alpha}=0.$$

У відповідності до основної ідеї зведення тривимірної динамічної задачі теорії пружності до двовимірної задачі про рух координатної поверхні замість напружень вводяться статично еквівалентні їм величини – зусилля й моменти:

$$N_{\alpha} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha} (1 + k_{2}\gamma) d\gamma ; N_{\beta} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\beta} (1 + k_{1}\gamma) d\gamma ;$$

$$N_{\alpha\beta} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \tau_{\alpha\beta} (1 + k_{2}\gamma) d\gamma ; N_{\beta\alpha} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \tau_{\beta\alpha} (1 + k_{1}\gamma) d\gamma ;$$

$$Q_{\alpha} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \tau_{\alpha\gamma} (1 + k_{2}\gamma) d\gamma ; Q_{\beta} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \tau_{\beta\gamma} (1 + k_{1}\gamma) d\gamma ;$$

$$M_{\alpha} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha} (1 + k_{2}\gamma) \gamma d\gamma ; M_{\beta} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\beta} (1 + k_{1}\gamma) \gamma d\gamma ;$$

$$M_{\alpha\beta} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \tau_{\alpha\beta} (1 + k_{2}\gamma) \gamma d\gamma ; M_{\beta\alpha} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \tau_{\beta\alpha} (1 + k_{1}\gamma) d\gamma .$$
(2.9)

Тоді рівняння руху елемента координатної поверхні оболонки, при врахуванні (2.3), (2.6) і (2.9), будуть мати такий вигляд:

$$\frac{\partial}{\partial \alpha}(BN_{\alpha}) - \frac{\partial B}{\partial \alpha}N_{\beta} + \frac{\partial}{\partial \beta}(AN_{\beta\alpha}) + \frac{\partial A}{\partial \beta}N_{\alpha\beta} + ABk_{1}Q_{\alpha} = AB\rho h \frac{\partial^{2}u}{\partial t^{2}},$$

$$\frac{\partial}{\partial \beta}(AN_{\beta}) - \frac{\partial A}{\partial \beta}N_{\alpha} + \frac{\partial}{\partial \alpha}(BN_{\alpha\beta}) + \frac{\partial B}{\partial \alpha}N_{\beta\alpha} + ABk_{2}Q_{\beta} = AB\rho h \frac{\partial^{2}v}{\partial t^{2}},$$

$$\frac{\partial}{\partial \alpha}(BQ_{\alpha}) + \frac{\partial}{\partial \beta}(AQ_{\beta}) - AB(k_{1}N_{\alpha} + k_{2}N_{\beta}) = AB\rho h \frac{\partial^{2}w}{\partial t^{2}},$$

$$\frac{\partial}{\partial \beta}(AM_{\beta}) - \frac{\partial A}{\partial \beta}M_{\alpha} + \frac{\partial}{\partial \alpha}(BM_{\alpha\beta}) + \frac{\partial B}{\partial \alpha}M_{\beta\alpha} - ABQ_{\beta} = 0,$$
(2.10)

$$\frac{\partial}{\partial \alpha}(BM_{\alpha}) - \frac{\partial B}{\partial \alpha}M_{\beta} + \frac{\partial}{\partial \beta}(AM_{\beta\alpha}) + \frac{\partial A}{\partial \beta}M_{\alpha\beta} - ABQ_{\alpha} = 0,$$
$$N_{\alpha\beta} - k_2M_{\beta\alpha} - N_{\beta\alpha} + k_1M_{\alpha\beta} = 0.$$

У виразах (2.9) – (2.10) N_{α} , N_{β} – нормальні зусилля розтягу-стиску; $N_{\alpha\beta}$, $N_{\beta\alpha}$ – зсувні зусилля; Q_{α} , Q_{β} – поперечні зусилля; M_{α} , M_{β} – згинаючі моменти; $M_{\alpha\beta}$, $M_{\beta\alpha}$ – крутильні моменти (рис. 2.1).

Останнє рівняння в (2.10) можна тотожньо задовольнити, прийнявши гіпотезу Балабуха-Новожилова, згідно якої:

$$M_{\alpha\beta} \approx M_{\beta\alpha} = H, \ N_{\alpha\beta} = S + k_2 H, \ N_{\beta\alpha} = S + k_1 H.$$
 (2.11)

Тоді рівняння руху (2.10) з урахуванням (2.11) приймуть такий вигляд:

$$\begin{aligned} \frac{\partial}{\partial \alpha}(BN_{\alpha}) &- \frac{\partial B}{\partial \alpha}N_{\beta} + \frac{1}{A}\frac{\partial}{\partial \beta}(A^{2}S) + 2k_{2}\frac{\partial A}{\partial \beta}H + ABk_{1}\left[Q_{\alpha} + \frac{1}{B}\frac{\partial H}{\partial \beta}\right] = AB\rho h\frac{\partial^{2}u}{\partial t^{2}}, \\ \frac{\partial}{\partial \beta}(AN_{\beta}) &- \frac{\partial A}{\partial \beta}N_{\alpha} + \frac{1}{B}\frac{\partial}{\partial \alpha}(B^{2}S) + 2k_{1}\frac{\partial B}{\partial \alpha}H + ABk_{2}\left[Q_{\beta} + \frac{1}{B}\frac{\partial H}{\partial \alpha}\right] = AB\rho h\frac{\partial^{2}v}{\partial t^{2}}, \\ \frac{\partial}{\partial \alpha}(BQ_{\alpha}) &+ \frac{\partial}{\partial \beta}(AQ_{\beta}) - AB\left(k_{1}N_{\alpha} + k_{2}N_{\beta}\right) = AB\rho h\frac{\partial^{2}w}{\partial t^{2}}, \end{aligned}$$
(2.12)
$$\frac{\partial}{\partial \alpha}(BM_{\alpha}) - \frac{\partial B}{\partial \alpha}M_{\beta} + \frac{1}{A}\frac{\partial}{\partial \beta}(A^{2}H) - ABQ_{\alpha} = 0, \\ \frac{\partial}{\partial \beta}(AM_{\beta}) - \frac{\partial A}{\partial \beta}M_{\alpha} + \frac{1}{B}\frac{\partial}{\partial \alpha}(B^{2}H) - ABQ_{\beta} = 0. \end{aligned}$$

Система диференціальних рівнянь (2.12) є основною для розв'язання динамічних задач для оболонок у рамках класичної теорії.

Внутрішні сили і моменти, що входять в рівняння коливань, визначаються через компоненти деформації за формулами:

$$N_{\alpha} = \frac{Eh}{1 - v^{2}} \left(\varepsilon_{\alpha} + v\varepsilon_{\beta} \right), \quad N_{\beta} = \frac{Eh}{1 - v^{2}} \left(v\varepsilon_{\alpha} + \varepsilon_{\beta} \right),$$

$$S = \frac{Eh}{2(1 + v)} \varepsilon_{\alpha\beta}, \quad M_{\alpha} = \frac{Eh^{3}}{12(1 - v^{2})} \left(\kappa_{\alpha} + v\kappa_{\beta} \right),$$

$$M_{\beta} = \frac{Eh^{3}}{12(1 - v^{2})} \left(v\kappa_{\alpha} + \kappa_{\beta} \right), \quad H = \frac{Eh^{2}}{12(1 + v)} \kappa_{\alpha\beta}.$$
(2.13)

Граничні умови для оболонок у зв'язку з тим, що деформація є тривимірною, можуть бути дуже різноманітними, проте їх число дорівнює чотирьом. На вільному краї кількість силових умов зменшується відповідно до принципу Сен – Венана. Найбільш поширеними є такі крайові умови: затиснений край ($\beta = const$)

$$u = v = w = 0; \quad \frac{1}{A} \frac{\partial w}{\partial \alpha} + \frac{u}{R_{\alpha}} = 0;$$
 (2.14)

опертий край ($\beta = const$)

$$u = v = w = 0; \quad M_{\alpha} = 0;$$
 (2.15)

вільний край ($\beta = const$)

$$N_{\alpha} = 0; \quad N_{\alpha\beta} + \frac{M_{\alpha\beta}}{R_{\alpha}} = 0; \quad Q_{\alpha} + \frac{1}{A} \frac{\partial M_{\alpha\beta}}{\partial \alpha} = 0; \quad M_{\alpha} = 0.$$
(2.16)

Вирази (2.8) – (2.12) утворюють крайові задачі теорії оболонок.

Рівняння коливань (2.8) досить складні. Тому існує цілий ряд спрощених теорій, з яких найбільш широко застосовується технічна
моментна теорія коливань оболонок. У технічній моментній теорії коливань оболонок застосовуються такі спрощення:

- у формулах зміни кривизни (2.7) нехтують членами, що містять переміщення в серединній поверхні;

- у рівняннях коливань нехтують членами, що містять кривизну Гауса $\frac{1}{R_1R_2}$. Для оболонок нульової кривизни спрощення виконується точно, для

пологих оболонок різної форми виконується наближено.

Після введення функції напружень за формулами

$$N_{\alpha} = \frac{1}{B} \frac{\partial}{\partial \beta} \left(\frac{1}{B} \frac{\partial \varphi}{\partial \beta} \right) + \frac{1}{A^2 B} \frac{\partial B}{\partial \alpha} \frac{\partial \varphi}{\partial \alpha};$$

$$N_{\beta} = \frac{1}{A} \frac{\partial}{\partial \alpha} \left(\frac{1}{B} \frac{\partial \varphi}{\partial \alpha} \right) + \frac{1}{AB^2} \frac{\partial A}{\partial \beta} \frac{\partial \varphi}{\partial \beta};$$

$$N_{\alpha\beta} = -\frac{1}{AB} \left(\frac{\partial^2 \varphi}{\partial \alpha \partial \beta} - \frac{1}{B} \frac{\partial B}{\partial \alpha} \frac{\partial \varphi}{\partial \beta} - \frac{1}{A} \frac{\partial A}{\partial \beta} \frac{\partial \varphi}{\partial \alpha} \right)$$
(2.17)

і позначення

$$\nabla_{\kappa}^{2} = \frac{1}{AB} \left[\frac{\partial}{\partial \alpha} \left(\frac{B}{A} \frac{1}{R_{2}} \frac{\partial}{\partial \alpha} \right) + \frac{\partial}{\partial \beta} \left(\frac{A}{B} \frac{1}{R_{1}} \frac{\partial}{\partial \beta} \right) \right]$$

рівняння коливань (2.8) приймають вигляд:

$$\frac{1}{Eh}\nabla^{2}\nabla^{2}\varphi - \nabla_{\kappa}^{2}w = 0;$$

$$\nabla_{\kappa}^{2}\varphi + D\nabla^{2}\nabla^{2}w - \rho h\frac{\partial^{2}w}{\partial t^{2}} = 0.$$
(2.18)

Система (2.14) еквівалентна рівнянню

$$\nabla^2 \Phi + \frac{12}{h^2} \left(1 - \nu^2 \right) \nabla_k^2 \left(\nabla_k^2 \Phi \right) - \rho h \frac{\partial^2 w}{\partial t^2} = 0, \qquad (2.19)$$

яке виходить після введення функції Ф за формулами:

$$w = \nabla^4 \Phi, \quad \varphi = Eh \nabla_k^2 \Phi.$$

У деяких випадках рівняння коливань можна проінтегрувати в замкнутому вигляді. У загальному випадку розв'язок знаходять за допомогою наближених методів. 2.2. Постановка задач про вільні коливання циліндричних оболонок з різним поперечним перерізом

Розглянемо пружне тіло в формі некругової циліндричної оболонок в ортогональній криволінійній системі координат $\alpha = s$, $\beta = t$, γ (рис. 2.2), де s = const, t = const – лінії головних кривизн на деякій координатній циліндричній поверхні, які представляють собою сукупність напрямних та твірних, а координата γ відраховується від нормалі до цієї поверхні. Дугову координату t направляючої відраховуємо від деякої фіксованої твірної, а натуральний параметр s твірної допускаємо рівним відстані до одного з граничних контурів координатної поверхні. У такому випадку положення деякої точки M у просторі буде визначатися трьома величинами (s, t, γ) .

Відповідно до класичної теорії Кірхгофа – Лява рівняння, що описують вільні коливання циліндричних оболонок, будуть мати вигляд

$$\frac{\partial N_s}{\partial s} + \frac{\partial S}{\partial t} = \rho h \frac{\partial^2 u}{\partial \tau^2},$$

$$\frac{\partial N_t}{\partial t} + \frac{\partial S}{\partial s} + k_t \left(Q_t + \frac{\partial H}{\partial s} \right) = \rho h \frac{\partial^2 \upsilon}{\partial \tau^2},$$

$$\frac{\partial Q_s}{\partial s} + \frac{\partial Q_t}{\partial t} - k_t N_t = \rho h \frac{\partial^2 w}{\partial \tau^2},$$

$$\frac{\partial M_s}{\partial s} + \frac{\partial H}{\partial t} = Q_s, \quad \frac{\partial M_t}{\partial t} + \frac{\partial H}{\partial s} = Q_t,$$
(2.20)

де ρ – густина матеріалу, h – товщина оболонки, τ – час.

Для нормальних N_s , N_t і зсувних зусиль S, згинних M_s , M_t та крутильних моментів H мають місце матеріальні співвідношення:

$$N_{s} = C_{11}\varepsilon_{s} + C_{12}\varepsilon_{t}, \qquad M_{s} = D_{11}\chi_{s} + D_{12}\chi_{t},$$

$$N_{t} = C_{12}\varepsilon_{s} + C_{22}\varepsilon_{t}, \qquad M_{t} = D_{12}\chi_{s} + D_{22}\chi_{t},$$

$$S = C_{66}\varepsilon_{st}, \qquad H = 2C_{66}\chi_{st},$$

(2.21)

де $C_{ij} = B_{ij}h(s,t)$ і $D_{ij} = B_{ij}h^3(s,t)/12$, $\{i, j\} \in \{1, 2, 6\}$, жорсткість оболонки при розтягу-стиску і згині відповідно, $B_{11} = E_1/(1-v_1v_2)$, $B_{22} = E_2/(1-v_1v_2)$, $B_{12} = v_2E_1/(1-v_1v_2) = v_1E_2/(1-v_1v_2)$, $B_{66} = G_{12}$.

Вираз для деформації серединної поверхні оболонки має вигляд:

$$\varepsilon_{s} = \frac{\partial u}{\partial s}, \qquad \chi_{s} = -\frac{\partial^{2} w}{\partial s^{2}},$$

$$\varepsilon_{t} = \frac{\partial v}{\partial t} + k_{t} w, \qquad \chi_{t} = -\frac{\partial^{2} w}{\partial t^{2}},$$

$$\varepsilon_{st} = \frac{\partial u}{\partial t} + \frac{\partial v}{\partial s}, \qquad \chi_{st} = -\frac{\partial^{2} w}{\partial s \partial t},$$
(2.22)

де $u(s, t, \tau)$, $v(s, t, \tau)$ і $w(s, t, \tau)$ – переміщення точок серединної поверхні оболонки. У виразах для згинних деформацій не враховуються тангенціальні переміщення.

Підставивши (2.22) в (2.21), а потім в (2.20), отримаємо три еквівалентні диференціальні рівняння в частинних похідних із змінними коефіцієнтами відносно трьох невідомих переміщень *u*, v i *w*:

$$C_{66} \frac{\partial^{2} u}{\partial t^{2}} + \frac{\partial C_{66}}{\partial t} \frac{\partial u}{\partial t} + C_{11} \frac{\partial^{2} u}{\partial s^{2}} + \frac{\partial C_{11}}{\partial s} \frac{\partial u}{\partial s} + (C_{66} + C_{12}) \frac{\partial^{2} \upsilon}{\partial t \partial s} + \frac{\partial C_{12}}{\partial s} \frac{\partial \upsilon}{\partial t} + \frac{\partial C_{66}}{\partial t} \frac{\partial \upsilon}{\partial s} + k_{t} C_{12} \frac{\partial w}{\partial s} + k_{t} \frac{\partial C_{12}}{\partial s} w = 0,$$

$$C_{22} \frac{\partial^{2} \upsilon}{\partial t^{2}} + \frac{\partial C_{22}}{\partial t} \frac{\partial \upsilon}{\partial t} + C_{66} \frac{\partial^{2} \upsilon}{\partial s^{2}} + \frac{\partial C_{66}}{\partial s} \frac{\partial \upsilon}{\partial s} + (C_{66} + C_{12}) \frac{\partial^{2} u}{\partial t \partial s} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial C_{12}}{\partial t \partial s} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial C_{12}}{\partial t \partial s} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial C_{12}}{\partial t \partial s} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial C_{12}}{\partial t \partial s} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial C_{12}}{\partial t \partial s} + \frac{\partial C_{66}}{\partial s} \frac{\partial u}{\partial t} + \frac{\partial U_{66}}{\partial s} \frac{\partial u}{\partial s} +$$

$$D_{22} \frac{\partial^4 w}{\partial t^4} + 2 \frac{\partial D_{22}}{\partial t} \frac{\partial^3 w}{\partial t^3} + 2(D_{12} + 2D_{66}) \frac{\partial^4 w}{\partial t^2 \partial s^2} + 2 \frac{\partial(D_{12} + 2D_{66})}{\partial s} \frac{\partial^3 w}{\partial t^2 \partial s} + + \left(\frac{\partial^2 D_{12}}{\partial s^2} + \frac{\partial^2 D_{22}}{\partial t^2}\right) \frac{\partial^2 w}{\partial t^2} + 2 \frac{\partial(D_{12} + 2D_{66})}{\partial t} \frac{\partial^3 w}{\partial t \partial s^2} + 4 \frac{\partial^2 D_{66}}{\partial t \partial s} \frac{\partial^2 w}{\partial t \partial s} + + D_{11} \frac{\partial^4 w}{\partial s^4} + 2 \frac{\partial D_{11}}{\partial s} \frac{\partial^3 w}{\partial s^3} + \left(\frac{\partial^2 D_{11}}{\partial s^2} + \frac{\partial^2 D_{12}}{\partial t^2}\right) \frac{\partial^2 w}{\partial s^2} + + k_t^2 C_{22} w + k_t C_{22} \frac{\partial v}{\partial t} + k_t C_{12} \frac{\partial u}{\partial s} + \rho h \frac{\partial^2 w}{\partial \tau^2} = 0.$$

На торцях оболонки *s* = *const* можна задати наступні граничні умови:

- жорстко закріплений торець (С):

$$u = v = w \Big|_{s=const} = 0, \qquad \frac{\partial w}{\partial s} \Big|_{s=const} = 0;$$
 (2.24)

- шарнірно закріплений торець (Sc):

$$u = v = w \Big|_{s=const} = 0, \qquad \left. \frac{\partial^2 w}{\partial s^2} \right|_{s=const} = 0;$$
 (2.25)

- шарнірно опертий торець (S):

$$u = w \Big|_{s=const} = 0,$$
 $\frac{\partial u}{\partial s} \Big|_{s=const} = 0,$ $\frac{\partial^2 w}{\partial s^2} \Big|_{s=const} = 0;$ (2.26)

- вільний торець (F):

$$N_{s}|_{s=const} = 0, \qquad M_{s}|_{s=const} = 0,$$

$$\left(S + 2k_{t}H\right)|_{s=const} = 0, \qquad \left(Q_{s} + \frac{1}{\gamma}\frac{\partial H}{\partial \theta}\right)|_{s=const} = 0.$$
(2.27)

2.3. Співвідношення методу скінченних елементів в задачах динаміки

Рівняння динаміки для МСЕ можна отримати, якщо розглянути рівняння руху механічної системи зі скінченною кількістю ступенів вільності, яка описується системою рівнянь Лагранжа II роду.

Дане рівняння руху для оболонки при її скінченоелементній

апроксимації з урахуванням відсутності зовнішніх сил (F(t) = 0) прийме вид:

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\lambda}_i} \right) - \frac{\partial T}{\partial \lambda_i} = Q_i, \quad i = 1, 2, \dots, n.$$
(2.28)

Використовуючи дискретну форму функціоналу кінетичної енергії

$$T = \frac{1}{2} \left\{ \dot{\lambda} \right\}_{i}^{T} M_{i} \left\{ \dot{\lambda} \right\}_{i}^{t},$$

з рівняння Лагранжа (2.28), отримаємо рівняння руху оболонки при відсутності демпфування у вигляді:

$$[M]{\ddot{\lambda}} + [K]{\lambda} = \{0\}, \qquad (2.29)$$

Розв'язок рівняння (2.28) можна шукати у вигляді

$$\{\lambda\} = \{A\}\cos(\omega t + \beta), \qquad (2.30)$$

де $\{A\}$ – вектор амплітудних значень вузлових переміщень, що визначають форму власних коливань; ω – колова частота, β – фаза коливань. Після прямої підстановки (2.30) у (2.29) та скорочення на $\cos(\omega t + \beta)$ отримаємо систему алгебраїчних рівнянь:

$$(-\omega^2[M]+[K])\{A\} = \{0\},$$
 (2.31)

У цієї системі ненульові значення компонентів {*A*} можливі лише при умові, що

$$\det\left(\left[K\right] - \omega^{2}\left[M\right]\right) = 0. \qquad (2.32)$$

Якщо квадратні матриці [M] та [K] – додатно визначені (звичайно для задачі лінійної пружності), то рівняння (2.32) має N додатних розв'язків – власних частот ω_k , причому можливі парні значення (тут N – кількість невідомих у системі алгебраїчних рівнянь (2.31)).

При виконанні умови (2.31), хоча б, одне з рівнянь (2.31) є наслідком останніх. Тому кожному значенню ω_k відповідає певне співвідношення між амплітудами A_{ki} . Іншими словами всі амплітуди вектора можуть бути виражені через одну з них. Співвідношення між амплітудами A_{ki} визначають k-ту власну форму коливань.

З рівняння (2.30) слідує, що всі ступені вільності в процесі коливань з власною частотою ω_k здійснюють синхронний рух. Таким чином, конфігурація конструкції не змінює своєї базової форми, а змінюються тільки амплітуди.

Маючи N значень власних частот ω_k , розв'язок системи (2.31) можна шукати у вигляді лінійної комбінації з N виразів (2.30):

$$\{\lambda\} = \sum_{k=1}^{N} \{A_k\} \cos(\omega_k t + \beta_k).$$
(2.33)

Тобто зміна форми лінійної пружної конструкції з часом, коли вона коливається вільно або здійснює вимушені коливання, є лінійною комбінацією всіх її власних форм.

Оскільки значення компонентів власних векторів $\{A_k\}$ можуть бути знайдені не однозначно, а з точністю до постійного множника, то звичайно їх нормують за правилом:

$$\{A_k\}^T [M] \{A_k\} = 1.$$
 (2.34)

Доведено, що власні вектори $\{A_k\}$ ортогональні відносно матриць [M] та [K], тобто

$$\{A_k\}^T [M] \{A_m\} = 0, \{A_k\}^T [K] \{A_m\} = 0, k \neq m.$$
 (2.35)

З фізичної точки зору *M* – ортогональність власних форм означає, що вони є унікальними, і не одна з них не може бути отримана лінійною комбінацією інших.

Ще можна відзначити, що звичайно шукають не всі корені рівняння (2.32), а декілька (позначимо як N_a) найменших значень, оскільки тільки при нижчих власних частотах амплітуди коливань мають відносно великі значення. Інакше кажучи, декілька перших власних частот та форм коливань достатньо для отримання задовільного наближення розв'язку (2.33).

Nastran для визначення власних форм і частот коливань, якщо дисипація енергії та демпфування не враховується, використовує, як

основний, метод Ланцоша (Lanczos), що потребує менших ресурсів (часу обчислень і вільної пам'яті на жорсткому диску) порівняно з іншими методами. Метод Ланцоша [139] дозволяє визначати *n*-у кількість потрібних власних значень частот і форм із заданою точністю. Чим більша кількість власних пар частот треба визначити, тим більш помітними виявляються переваги цього метода.

Знаходження власних частот і форм коливань зводиться до розв'язування системи алгебраїчних рівнянь (2.31).

Метод Ланцоша використовує зведення до тридіагональної матриці Т.

$$T = Q_j^T M K^{-1} M Q_j, \qquad (2.36)$$

де $Q_j = \{q_1, q_2, ..., q_j\}$ – прямокутна матриця з елементами $N_{eq} \times j$, N_{eq} – число рівнянь, j – номер кроку по Ланцошу, q_j – j-ий вектор Ланцоша. Вираз

$$\beta_{j+1}\vec{q}_{j+1} = K^{-1}M\vec{q}_{j} - \alpha_{j}\vec{q}_{j} - \beta_{j}\vec{q}_{j}, \qquad (2.37)$$

генерує наступний вектор Ланцоша q_{j+1} і визначає поточний рядок матриці T

$$T = \begin{vmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \beta_3 & \alpha_3 & \beta_4 \\ \vdots & \vdots & \ddots & \ddots \\ & & & & \beta_j & \alpha_j \end{vmatrix}$$

Таким чином, отримаємо задачу власних значень:

$$T \ \vec{s}_k^{\ j} - \lambda_k^{\ j} \vec{s}_k^{\ j} = 0, \quad k = 1, 2, ..., j.$$
(2.38)

 $(\omega_k^j)^2 = 1/\lambda_k^j$, де $\omega_k^j - j$ -а апроксимація колової частоти ω_k , k = 1,2,...,n, n – потрібне число власних пар. Алгоритм продовжує обчислення (при збільшенні j – номера кроку процедури Ланцоша) до тих пір, поки не буде досягнута потрібна точність $\|\{\lambda\}_i - \omega_i^2 K^{-1} M \{\lambda\}_i\| / \|\{\lambda\}_i\| \le 10^{-7}$ по всіх власних значеннях.

Процедура вибіркової ортогоналізації підтримує потрібний рівень

ортогоналізації векторів Ланцоша q_j , що забезпечує надійність і стійкість чисельного процесу розрахунку. Використовуються економічні методи для реалізації процедури вибіркової ортогоналізації і для розв'язування редуцированої задачі власних значень (2.39) шляхом застосування подвійних QR-ітерацій із зсувами.

Вихідні власні вектори визначаються за формулою

$$T \vec{s}_{k}^{j} - \lambda_{k}^{j} \vec{s}_{k}^{j} = 0, \quad k = 1, 2, ..., j$$
(2.39)

Перевагою методу Ланцоша є те, що матриця вихідного оператора використовується лише у вигляді матрично-векторних операцій, що дозволяє застосовувати алгоритм до розріджених матриць великої розмірності з довільною структурою. Процес Ланцоша являє собою ітеративну процедуру побудови базису підпростору Крилова в якому вихідний оператор представляється дійсною симетричною тридіагональною матрицею, пари Рітца якої апроксимують власні пари вихідного оператора. Відповідно до теорії Каніела-Пейджа оцінки різниць відповідних власних значень вихідної матриці і їх апроксимацій отримують заміною характеристичного полінома отриманої тридіагональной матриці поліномами Чебішева. Відповідно до цієї теорії збіжність до власних значеннях на краях спектра відбувається швидше. Чим більша відносна віддаленість зовнішніх власних значень від внутрішніх, тим збіжність швидша.

2.4. Огляд програми FEMAP

Однією з САЕ-систем є FEMAP – незалежний від САПР (системи автоматизованого проектування та розрахунку) пре- і постпроцесор від Siemens PLM Software для проведення інженерного аналізу методом скінчених елементів (МСЕ). FEMAP є сполучною ланкою між користувачем і розв'язувачем – ядром, що здійснює обчислення в задачах інженерного аналізу. Система FEMAP, інтегрована з розв'язувачем NX Nastran, працює на базі Microsoft Windows, входить у лінію продуктів Velocity Series і є незалежним повнофункціональним середовищем для моделювання, імітації

та оцінки результатів аналізу характеристик виробу.

Система FEMAP на базі розв'язувача NX Nastran дозволяє проводити аналіз динаміки та міцності конструкцій, машин і споруд, отримувати розв'язок нестаціонарних нелінійних просторових задач, задач механіки композитів і композитних структур, будівельної та технологічної механіки, проводити аналіз теплопередачі, отримувати розв'язок задач механіки рідини і газу.

Базові модулі FEMAP з NX Nastran дозволяють проводити основні види інженерного аналізу, такі як лінійний статичний аналіз, аналіз частот і форм вільних коливань, аналіз втрати стійкості конструкцій, аналіз задач стаціонарного та нестаціонарного теплообміну, базові можливості нелінійного аналізу. Базовий нелінійний аналіз включає облік таких нелінійностей, як геометрична (великі деформації, переміщення) і фізична (врахування нелінійності матеріалів _ пластичності. повзучості, в'язкопружності), врахування контактної взаємодії при малих переміщеннях «лінійний» контакт, врахування контакту 3 умовою суцільності. Розширений нелінійний модуль (Advanced Nonlinear) використовується при аналізі великих нелінійностей (в тому числі деформування, врахування просторової контактної взаємодії), при поєднанні різних видів нелінійностей, а також при моделюванні та розрахунку швидкоплинних нелінійних динамічних процесів на основі явної схеми інтегрування. FEMAP включає три додаткових модуля: FEMAP Flow Solver – дозволяє здійснювати аналіз гідро- та газодинаміки; FEMAP Advanced Thermal Solver – надає набір можливостей для аналізу тепломасопередачі, включаючи моделювання конвекції і аналіз гідро-, газодинамічних потоків; FEMAP Thermal Solver – розв'язування для температурного аналізу та аналізу теплопередачі.

FEMAP використовується фахівцями проектних організацій для моделювання складних конструкцій, систем і процесів, таких як, супутники, літаки, електронна апаратура військового призначення, важке будівельне обладнання, підйомні крани, морський транспорт і технологічне обладнання.

FEMAP забезпечує розв'язування складних задач інженерного аналізу в різних галузях, наприклад, таких як авіаційно-космічна, авіабудування, оборонна промисловість і суднобудування.

Повний цикл проведення аналізу елемента конструкцій складається з таких етапів:

- ✓ аналіз геометрії елемента конструкції, умов його навантаження, властивостей матеріалу тіла, створення розрахункової моделі;
- ✓ введення теплофізичних і механічних характеристик матеріалів;
- створення геометричної і на її основі скінченно-елементної моделі тіла; або створення скінченно-елементної моделі тіла відразу, без геометричної моделі;
- ✓ введення початкових і граничних умов;
- ✓ проведення розрахунків;
- візуалізація отриманих результатів та їх критичний аналіз;
- при необхідності модифікація скінченно-елементної моделі тіла, характеристик матеріалів, початкових і граничних умов, повторне проведення розрахунків;
- фіксація отриманих результатів (створення малюнків растрової графіки, виведення на друкувальний пристрій текстової та/або графічної інформації, передача в інші програми).

2.5 Експериментальне визначення частот та форм вільних коливань методом голографічної інтерферометрії

2.5.1. Основні принципи голографічної інтерферометрії

Голографія – це метод запису і відновлення просторового хвильового фронту, оснований на реєстрації результату інтерференції двох хвиль та відтворення їх дифракції на зафіксованій просторовій структурі [99]. Тобто предметна хвиля, яка відбивається від предмета, інтерферує з допоміжною когерентною їй опорною хвилею в площині фоточутливого матеріалу. Після фотохімічної обробки дана фотопластина і буде голограмою предмета. Результат інтерференції, в кожній точці, залежить від різниці фаз коливань, а інтенсивність результуючого коливання A^2 визначається виразом:

$$A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\delta, \qquad (2.40)$$

де a_1 та a_2 – амплітуди інтерферуючих коливань; δ – різниця фаз між ними, причому $\delta = \psi_1 - \psi_2 = \frac{2\pi}{\lambda} \Delta$, ψ_1 та ψ_2 – початкові значення фаз відповідних коливань, Δ – здобута різниця ходу хвиль.

Помістивши фотопластину у поле інтерференції, густина почорніння кожної її ділянки буде містити інформацію про фазові співвідношення інтерферуючих коливань. Промені m і n відповідають сусіднім максимумам інтерференції предметного та опорного пучків (рис. 2.3). Це вимагає щоб різниця ходу між ними Δr дорівнювала довжині хвилі:

$$\Delta r = d\sin\theta = \lambda \tag{2.41},$$

де *d* – просторовий період зафіксованої на голограмі інтерференційної структури

Звідси маємо:

$$d = \frac{\lambda}{\sin \theta} \tag{2.42}$$

Просторова частота у виразиться співвідношенням:

$$v = \frac{1}{d} = \frac{\sin \theta}{\lambda} \tag{2.43}$$

Наприклад, при $\theta = 300 \rightarrow \nu = 800$ лін / мм.

Для запису голограм необхідно використовувати фотопластини з високою роздільною здатністю, наприклад, ЛОІ-2 (500 *лін/мм*). На стадії відновлення отримана голограма освітляється тільки опорною хвилею (рис. 2.4). У результаті дифракції відновлювальної хвилі на голограмній структурі, отримаємо три пучки.

Запишемо формулу дифракційної решітки [99]

$$d\sin\phi = k\lambda \ (k=0,\pm 1,\pm 2,...)$$
 (2.44),

Підставивши (2.42) в (2.44) і врахувавши, що k=1 отримаємо:

 $\theta = \phi$

Це дає можливість зробити висновок про ідентичність предметної та відновленої в +1-му порядку хвиль, що і пояснює принцип голографічного запису. Хвиля нульового порядку (k=0) буде продовженням відновлюючого пучка. Через голограму, у напрямі пучка k=+1 спостерігатиметься копія предметної хвилі, тобто уявне зображення об'єкта голографування. Така ж хвиля розповсюджується в напрямку k=-1, але вона має інший фізичний зміст, оскільки формує дійсне зображення. Хвилі, для яких |k|>1 в голографії не розглядаються.

Схема запису голограми

Найбільш розповсюдженими є схеми запису голограм в збіжних (рис. 2.5) та зустрічних пучках (рис. 2.6).

Особливість голографування в зустрічних пучках полягає в тому, що на стадії відновлення голограми відбувається дифракція Бульфа – Брега на просторовій інтерференційній структурі. Це надає такій голограмі селективних властивостей, при цьому вона може бути відтворена в білому світлі.

Рис.2.5. Схема запису голограми в збіжних пучках.

Рис.2.6. Схема запису голограми в зустрічних пучках.

2.5.2. Апаратура і обладнання для забезпечення голографічного експерименту

Для фіксування голограми необхідно мати джерела випромінювання, які повинні задовольняти наступним вимогам:

✓ мати необхідну часову та просторову когерентність;

✓ достатню потужності при відповідній довжині хвилі світла.

Джерело випромінювання має часову або повздовжню когерентність, якщо різниця фаз світлової хвилі, виміряна в довільній точці за довільний проміжок часу Δt , не змінюється з часом. Якщо у двох фіксованих точках площини, перпендикулярної напрямку ходу променів, різниця фаз залишається постійною у часі, то таке джерело володіє просторовою або поперечною когерентністю. Часова та просторова когерентність забезпечує

отримання стабільної та чіткої інтерференційної мікроструктури в площині голограми під час всього запису. Потужність джерела випромінювання повинна забезпечувати можливість запису світлових хвиль на реєструючому середовищі в межах заданої експозиції. Для запису голограм в більшості випадків необхідна енергія випромінювання від 1 мкДж до 1 Дж.

Цим вимогам найбільш повно відповідають оптичні квантові генератори – лазери, оскільки вони одночасно дозволяють отримувати світло високої інтенсивності та забезпечують просторову когерентність. Лазер – це джерело випромінювання, в якому здійснюється генерація монохроматичних електромагнітних хвиль оптичного діапазону внаслідок індукованого випромінювання.

Специфіка голографічного процесу, пов'язана 3 відновленням ХВИЛЬОВОГО фронту, потребує застосування спеціальних реєструючих середовищ, у яких при експонуванні та проявленні повинна змінюватись одна з основних характеристик: показник заломлення n, коефіцієнт амплітудного проникнення $\tau = a_{mx} / a_{nad}$, товщина шару реєструючого середовища h. У цьому випадку, коли експозиція впливає лише на т, середовище називається поглинаючим або реєструюче амплітудно модулюючим. Такі середовища можна використовувати як для традиційного процесу (фото процесу), так й для запису голограм. Якщо експозиція впливає на n або h, середовище називається пропускним або фазово-модулюючим. Ці матеріали є ідеальними для голограм і не придатні для звичайної фотографії.

Основними характеристиками реєструючих середовищ є роздільна здатність v_c , дифракційна ефективність η , чутливість і лінійність запису [41]. Крім того, реєструюче середовище по своїх спектральних характеристиках повинна відповідати джерелу випромінювання. Для якісного реєстрування інтерференційної картинки необхідно, щоб роздільна здатність середовища v_c була більшою за просторову частоту інтерференційної картинки v. У випадку, коли запис голограм здійснюється по неосьовій схемі, роздільну здатність можна оцінити за формулою:

$$v_c > v = (2 / \lambda) \sin \phi$$
,

де λ – довжина хвилі; φ – половина кута між напрямком опорного та предметного пучка. Зазвичай величина знаходиться в межах від 300 до 1200, відповідно роздільна здатність від 600 до 1500 ліній/мм. Звідси випливає, що роздільна здатність реєструючих середовищ для голографії набагато вища звичайних фотоматеріалів (для яких vc <200~300 ліній/мм).

Галогенідосрібні фотоматеріали, що набули найбільшого поширення через високу чутливість (~0.1 мДж/см2) та широкий спектральний діапазон є суспензією мікрокристалів (0.03 – 0.08 мкм) галогеніда срібла (хлорид, бромід) у шарі желатину завтовшки 5-10 мкм. Матеріал такого типу завдяки високій роздільній здатності та порівняно простому виготовленні використовується в більшості випадків, не дивлячись на ряд обмежень, які пов'язані с процесом їх обробки. Оскільки ці матеріали мають високу роздільну здатність, то ïχ чутливість значно звичайні за нижча фотоматеріали.

Процес реєстрації голограми на таких матеріалах включає декілька етапів:

1. Отримання прихованого зображення. Картина інтерференції предметної і опорної хвиль освітлює фотопластину. Кристали галогеніда срібла поглинають світло, при цьому в місцях максимуму освітлення утворюється чотириатомний агрегат металевого срібла усередині (або на поверхні) кристала галогеніда.

2. Проявка. За допомогою відновника (гідрохінового проявника) галогенід срібло відновлюється до металевого срібла, яке виконує роль каталізатора хімічного відновлення, збільшуючи швидкість реакції до такого ступеня, що кристал прихованого зображення може перетворитися на металеве срібло, перш ніж неекспонований кристал вступить в реакцію.

3. Фіксація. Неекспоновані і не проявлені кристали галогеніда все ще володіють світлочутливістю. Їх треба видалити за допомогою гіпосульфіту, який перетворить галогенід срібло в розчинне у воді з'єднання срібла.

4. Сушка В результаті утворюється тонкі амплітудні дифракційні грати з низькою дифракційною ефективністю.

Голографічні фотоматеріали можуть бути призначені як для роботи в широкому спектрі випромінювання (панхроматичні фотошари), так й для роботи в вузькому діапазоні довжин хвиль, наприклад, у синьо-зеленій або червоній частині спектру. Звичайна товщина фоточутливого шару для голографічних матеріалів складає 6-15 мкм, а максимальній розмір зерен галогеніду срібла не перевищує 0,1 мкм. Для отримання голограм краще використовувати фотопластини з противоореольним шаром. Відмітимо, що чутливість та роздільна здатність фотоматеріалу залежать від довжини хвилі джерела випромінювання, причому зі зменшенням λ із-за розсіювання світла роздільна здатність падає.

Особливістю процесу отримання голограми є те, що крім утворення темних та світлих зон, відбувається зміна рельєфу поверхні в результаті нерівномірної усадки емульсії та зміни оптичних характеристик матеріалу. Таким чином, отримання за допомогою галогенодосрібних фотоматеріалів голограм не є ідеально амплітудним, так як дифракція світла обумовлена як зміною коефіцієнта пропускання $\Delta \tau$, так й зміною товщини шару Δh . Величина Δh залежить, в основному, від рівня експозиції і режиму фотохімічної обробки.

При сушці рекомендується після прояви та закріплення замочити голограму протягом 90с в спирті, потім протягом 90с в ізопропанолі, після чого просушити поверхню фотопластини потоком сухого повітря. Такий процес сушки дає збільшення якості голографічної інтерферометрії. Зменшити усадку фото шару можна також, виключивши операцію фіксації голограми, але в цьому випадку голограма з часом темніє. Кращі результати можна отримати, якщо голограму попередньо обробити триетаноламіном й повільно сушити повітрям.

Підвищити дифракційну ефективність (в 10–15 разів) й голографічну чутливість (в 5–10 разів) галогенодосрібних фотоматеріалів можна шляхом

перетворення амплітудної голограми в фазову. Це можна отримати за допомогою процесу вибіленя голограми, яке призводить або до зміни товщини фотоемульсійного шару, або до зміни коефіцієнту заломлення. Вибілені голограми, як правило, дають великий рівень шумів в порівнянні з невибіленими.

Для формування оптичної схеми, окрім джерела когерентного світла, необхідно застосовувати оптичні елементи, що дозволяють змінювати напрям лазерного пучка, проводити його розділення на предметний та опорний, перетворювати хвильовий фронт з плоского в сферичний, тощо.

Для відбивання лазерних променів необхідно використовувати дзеркала тільки з поверхневим відбиваючим шаром, в протилежному випадку спостерігається інтерференція світлових хвиль, відбитих від верхньої та робочої поверхонь дзеркала, що призводить до їх паразитної модуляції.

В якості світлодільника застосовують звичайну скляну пластинку, але клинкової форми, для просторового розділу променів, відбитих від двох поверхонь скляного клину.

Розширення лазерного пучка з перетворенням хвильового фронту з плоского в сферичний здійснюється за допомогою мікрооб'єктива 8, 20, 40 кратного збільшення. Слід зауважити, що наявність дефектів, мікропошкоджень та пилинок на поверхні лінз об'єктиву призводить до дифракції на них світлових хвиль, що суттєво спотворює однорідність світлового пучка. Для запобігання цьому ефекту в фокусі мікрооб'єктиву розміщують фільтруючу мікродіофрагму, що пропускає основні пучки і затримує дифракційне світло.

Для амплітудної модуляції лазерного випромінювання при дослідженні віброрезонансних явищ та отриманні режиму гігантського імпульсу застосовують електрооптичний модулятор випромінювання, принцип дії якого оснований на ефекті Керра в рідких оптичноактивних середовищах, або на ефекті Поккельса в оптично активних кристалах [77].

Для збудження коливань оболонки розроблений і виготовлений

п'єзокерамічний вібратор, який представляє собою суцільну оболонку із набором п'єзокерамічних круглих шайб із титанату барія з контактними пластинками із мідної тонкої фольги, з'єднаних паралельно, щоб забезпечити подачу на шайби змінної напруги (рис. 2.7). Стовпчик шайб притискувався інерційним елементом за допомогою різьбового з'єднання. Кількість шайб набирали парними. При цьому обидві основи вібратора повинні мати однакову полярність, що виключало необхідність застосування ізоляційних прокладок. Амплітуда коливань вібратора вздовж вісі дорівнює сумі коливань окремих п'єзошайб. Для розширення частотного діапазону до інерційного елемента приєднуються додаткові маси, які зміщують власну вібратора. Віброприскорення такого віброзбудження частоту можуть досягати великих значень, які недосяжні іншими типами вібраторів. Особливо високі вібраційні параметри реалізовувались у резонансних областях самого вібратора.

Рис. 2.7. П'єзокерамічний вібратор

Щоб одержати високий контраст інтерференційної картини по всій спостережуваній поверхні вібруючої оболонки, необхідно прибрати

«паразитне» засвічування голограми в ті моменти часу, коли об'єкт проходить проміжні між амплітудними положеннями. З цією метою зручно використовувати стробоскопічну реєстрацію голограми, синхронізуючи стробоімпульси, з амплітудними станами об'єкту. Для стробування проміння оптичного квантового генератора (ОКГ) ЛГН-222 розроблений і виготовлений стробокомплекс, блок – схема якого показана на (рис. 2.8).

Рис. 2.8. Стробокомплекс

Віброзбуджуючий сигнал формується за допомогою звукового генератора ГЗ-118 і підсилюється підсилювачем низької частоти потужності до 300 Вт, який спеціально розроблений для збудження оболонок. Як стробуючий елемент для одержання стробоінтерферограм застосовується електрооптичний модулятор випромінювання типу МЛ-3. Стробуючий електричний сигнал формується генератором прямокутних імпульсів Г5-54 і після підсилення по напрузі до 640 В подавався на модулятор вимірювання. Генератор прямокутних імпульсів через фазообертач запускається сигналом того ж звукового генератора, який застосовувався для віброзбудження. Це необхідно для синхронізації стробуючих імпульсів з визначеною фазою коливань оболонки. Контроль скважності стробуючих імпульсів здійснювався по екрану осцилографа С 1-17, на вхід якого подавався сигнал з генератора прямокутних імпульсів.

Висновки до другого розділу

- 1. Виконана постановка задачі про вільні коливання циліндричних оболонок з круговим та некруговим поперечними перерізомами.
- Наведені основні положення метода скінченних елементів, який що застосовується при розв'язуванні задач динаміки оболонкових конструкцій, який базується на розв'язку рівнянь Лагранжа II роду в дискретній формі та скінченно-елементній апроксимації методом Ланцоша.
- 3. Описані основні принципи методу стробоголографічної інтерферометрії, який дає можливість в реальному часі спостерігати інтерференційні картини коливань поверхні оболонок, точно встановлювати момент виникнення резонансу, вибирати необхідний режим віброзбудження; наведені апаратура і обладнання для забезпечення експерименту.
- 4. Достовірність отриманих результатів при застосуванні запропонованих методів забезпечується коректністю проведення експериментів та вимірювань; використанням апробованих чисельних методів і критерію практичної збіжності; узгодженням чисельних результатів з експериментальними та чисельними розв'язками тестових задач.

РОЗДІЛ З

РОЗВ'ЯЗУВАННЯ ЗАДАЧ ПРО ВІЛЬНІ КОЛИВАННЯ ЦИЛІНДРИЧНИХ ОБОЛОНОК З РІЗНИМ ПОПЕРЕЧНИМ ПЕРЕРІЗОМ НА ОСНОВІ МЕТОДУ СКІНЧЕННИХ ЕЛЕМЕНТІВ

3.1. Оцінка достовірності отриманих результатів розрахунку

Достовірність отриманих результатів забезпечується використанням обґрунтованої математичної моделі, коректністю постановки задачі, розв'язком тестових задач та практичною збіжністю розрахованих частот при застосуванні метода скінченних елементів.

Розглянемо основні етапи розв'язку задач запропонованим методом та форми контролю результатів, які використовувались на кожному з них.

Етапи розв'язування задач за допомогою програмного засобу

Форма контролю достовірності результатів

FEMAP

- Створення геометрії розрахункової моделі.
- Введення фізико-механічних характеристик матеріалів.

Правильність та послідовність побудови геометрії досліджуваних оболонок, перевірка розмірів та еквівалентність маси. Корекція характеристик згідно табличних даних.

 Створення скінченно- Розмір елементів підбирався згідно елементної моделі. критерію практичної збіжності

результату. Вид скінченних елементів та їхні властивості підбирались з урахуванням складності геометрії.

- 4. Накладання граничних умов. По
- Проведення розрахунків на визначення частот та форм вільних коливань.

Порівняння результатів накладання різних видів граничних умов різними способами. Застосування ліцензійного програмного засобу FEMAP, що використовується для виконання інженерних та наукових У даній дисертаційній роботі достовірність результатів, отриманих за допомогою запропонованої методики, перевірялась наступним чином:

1. Порівнювались власні частоти коливань консольної кругової циліндричної оболонки отримані методом скінченних елементів при розбиті різними видами елементів різних розмірів.

2. Порівнювались власні частоти коливань кругової циліндричної оболонки з різними граничними умовами, отримані методом скінченних елементів, з частотами, отриманими експериментально в роботах [28, 181, 186].

При проведенні розрахунків використовувались наступні варіанти граничних умов на торцях z = 0 та z = h:

- жорстко закріплений контур (C) $u = v = w = \varphi_x = \varphi_y = \varphi_z = 0;$ - шарнірно закріплений контур (Sc)u = v = w = 0;- шарнірно опертий контур (S)u = v = 0;- вільно опертий контур (Sf) $u = v = \varphi_x = \varphi_y = 0;$ - ковзаюче закріплення (Sl) $w = 0, \ \varphi_x = 0, \ \varphi_y = 0;$

– вільний (незакріплений) контур (*F*) $u \neq 0, v \neq 0, w \neq 0, \phi_x \neq 0, \phi_y \neq 0, \phi_z \neq 0;$ де *u*, *v*, *w*, ϕ_x , ϕ_y , ϕ_z – відповідно компоненти переміщень та кутів повороту для точок на торцях.

Для коректного вибору розмірів та типу скінченних елементів проводились наступні дослідження.

Розглядалась консольно закріплена кругова циліндрична оболонка з радіусом серединної поверхні $R = 43,547 \ mmmode mmmm$

товщині оболонки (d), половині товщини оболонки (d/2) та третині товщини оболонки (d/3). Розраховані частоти методом скінченних елементів з різним розміром елементів представлені у вигляді таблиці 3.1 та гістограми (рис. 3.1), де m – кількість вузлів вздовж твірної, n – кількість вузлів вздовж дугової координати.

Таблиця 3.1

т	п	f , Гц				
		d	d/2	d/3		
1	4	1853,32	1835,91	1834,41		
1	6	2368,1	2265,74	2257,77		
1	8	4045,14	3976,71	3960,00		
1	10	6662,42	6318,14	6291,23		
1	12	9665,94	9154,78	9148,63		
2	4	6480,01	6476,41	6475,94		
2	6	4869,36	4811,59	4807,06		
2	8	5394,62	5302,22	5288,43		
2	10	7552,34	7230,85	7206,28		
2	12	10421.8	9935.44	9927.61		

Частоти вільних коливань циліндричної оболонки

при різних розмірах solid-елемента

Рис. 3.1. Гістограма власних частот при різних розмірах solid-елемента

При аналізі власних частот представлених в таблиці 3.1 спостерігається мале відхилення між частотами при розмірі solid-елемента, що дорівнює d/2 і d/3. Порівнюючи власні частоти при розмірах елементів d і d/2, маємо більш значне відхилення, яке у деяких випадках досягає 6%. Відмітимо, що

різниця затрат машинного часу збільшується із зменшенням розміру елемента, крім того, більша кількість елементів призводить до збільшення похибки округлення. Аналізуючи ці результати можна зробити висновок, що для розрахунку частот вільних коливань тонких оболонок достатньо вибрати розмір solid-елемента рівний половині товщини оболонки, при цьому затрати машинного часу будуть оптимальними.

Розбивка даної оболонки також проводилась скінченними елементами типу plate з лінійним розміром d/2. Отримані власні частоти кругової оболонки, отримані при розбивці solid-елементами та plate-елементами, представлені у вигляді таблиці 3.2.

Таблиця 3.2

111	10	f,	Гц	$\left \frac{f_{solid} - f_{plate}}{100\%} \right $
т	п	Solid	Plate	f_{solid}
1	4	1835,91	1832,25	0,20
1	6	2265,74	2255,38	0,46
1	8	3976,71	3957,63	0,48
1	10	6318,14	6292,01	0,41
1	12	9154,78	9156,88	0,02
2	4	6476,41	6475,31	0,02
2	6	4811,59	4807,76	0,08
2	8	5302,22	5292,5	0,18
2	10	7230,85	7208,42	0,31
2	12	9935,44	9937,08	0,02

Таблиця власних частот отриманих при різних типах елементів

У таблиці 3.2 наведені відхилення власних частот при розбивці plateелементами від власних частот при розбивці solid-елементами, які не перевищують 0,5%, що вказує на рівноправність використання обох видів елементів. В усіх розрахунках даної дисертаційної роботи використовувались solid-елементи, оскільки при моделюванні оболонок змінної товщини вздовж контуру поперечного перерізу plate-елементами виникають складності внаслідок нелінійної зміни товщини. Програмний засіб FEMAP також дає можливість здійснювати розбивку axisymmetric shell- та axisymmetric solidелементами, які використовуються при побудові осесиметричних оболонок. Оскільки в даній роботі розглядаються некругові оболонки, то використання елементів таких типів стає недоречним.

Отже, для виконання розрахунків за допомогою FEMAP були вибрані solid-елементи розміром d/2.

Перейдемо до розгляду тестових задач, за допомогою яких перевірялась достовірність результатів розрахунків, які наведені в основній частині дисертаційної роботи.

1. В якості першої тестової задачі розглядалась вільно оперта на обох торцях циліндрична оболонка радіусом кривизни серединної поверхні $R = 37,7 \ mm$, товщиною $d = 0,229 \ mm$ та висотою $h = 233,74 \ mm$. Матеріалом оболонки вибиралась сталь з модулем Юнга $E = 201 \ \Gamma \Pi a$, коефіцієнтом Пуассона v = 0,29, густиною $\rho = 7812 \ \kappa e/m^3$. Параметри оболонки задані відповідно до параметрів дослідженої оболонки експериментальним методом [181]. Порівняння частот, розрахованих методом скінченних елементів реалізованого на FEMAP, з частотами, отриманими експериментально [181], наведено в таблиці 3.3.

Таблиця 3.3

	1 1 [.]								
m	n	f _{експер.} , Гц	$f_{\scriptscriptstyle 4$ исельно , Гц	$\left \frac{f_{_{\textit{чисельно}}} - f_{_{ekcnep}}}{f_{_{ekcnep}}} \right \times 100\%$					
1	6	640,00	640,12	0,02					
1	8	688,00	666,17	3,17					
1	10	995,00	956,94	3,83					
1	12	1430,00	1372,88	3,99					
1	14	1938,00	1878,23	3,08					
2	6	2070,00	2096,43	1,28					
2	8	1430,00	1389,72	2,82					
2	10	1313,00	1268,04	3,42					
2	12	1570,00	1511,13	3,75					

Власні частоти розраховані МСЕ та частоти отримані експериментально [181] Відхилення власних частот, отриманих методом скінченних елементів реалізованого на FEMAP, від власних частот, отриманих експериментально [181], не перевищує 4%.

2. В якості другої тестової задачі розглядалась жорстко закріплена на одному торці циліндрична оболонка радіусом кривизни серединної поверхні $R = 77,25 \ mm$, товщиною $d = 1,5 \ mm$ та висотою $h = 230,9775 \ mm$. Матеріалом оболонки вибиралась сталь з модулем Юнга $E = 205 \ Fma$, коефіцієнтом Пуассона v = 0,30, густиною $\rho = 7800 \ mmsc{k}^2/m^3$. Параметри оболонки задані відповідно до параметрів розрахованої оболонки методом скінченних елементів за допомогою 3D solid-елементів [100] та дослідженої методом скінченних елементів інтерферометрії [186]. Порівняння частот, розрахованих методом скінченних елементів реалізованого на FEMAP, з частотами, отриманими чисельно [100] та експериментально [186], наведено в таблиці 3.4.

Таблиця 3.4

т	п	f _{експер.} , Гц	$f_{3D\ solid}$, Гц	f _{Femap} , Гц	$\frac{f_{\textit{Femap}} - f_{\textit{ekcnep}}}{f_{\textit{ekcnep}}} \times 100\%$	$\frac{f_{Femap} - f_{3D \text{ solid}}}{f_{3D \text{ solid}}} \times 100\%$
1	4	708,00	821,80	815,95	15,25	-0,71
1	6	616,00	635,90	643,68	4,49	1,22
1	8	945,00	952,00	970,91	2,74	1,99
1	10	1479,00	1502,60	1544,03	4,40	2,76
1	12	2151,00	2121,10	2292,04	6,56	8,06
2	6	1969,00	2019,20	2031,40	3,17	0,60
2	8	1628,00	1636,00	1662,22	2,10	1,60
2	10	1851,00	1820,40	1889,39	2,07	3,79

Власні частоти розраховані МСЕ, частоти отримані чисельно [100] та експериментально [186]

Відхилення власних частот, отриманих методом скінченних елементів реалізованого на FEMAP, від власних частот, отриманих чисельно [100], не перевищує 8,5%, а від частот, отриманих експериментально [186], не перевищує 7%, за винятком суперечних значень мінімальної частоти, отриманих трьома різними авторами. Оскільки частоти, отримані чисельними методами мають незначне відхилення в порівняння з експериментально отриманими, то можна вважати, що визначені частоти методом скінченних елементів є достовірними. Дані результати задовольняють похибку достовірності результатів.

3. Третьою тестовою задачею була обрана задача про консольно закріплену кругову циліндричну оболонку з радіусом серединної поверхні $R = 44,75 \ \text{мm}$, товщиною $d = 0,5 \ \text{мm}$ та висотою $h = 112,05 \ \text{mm}$. Матеріалом оболонки вибиралась сталь 38XC з модулем Юнга $E = 220 \ \Gamma \Pi a$, коефіцієнтом Пуассона v = 0,28, густиною $\rho = 7740 \ \kappa c/m^3$. Параметри оболонки обрані відповідно до параметрів оболонки дослідженої методом голографічної інтерферометрії [28]. Порівняння частот, розрахованих методом скінченних елементів, з частотами, отриманими експериментально [28], наведено в таблиці 3.5.

Таблиця 3.5

т	п	f _{експер.} , Гц	$f_{{\scriptscriptstyle 4}uceльнo},\ {\scriptstyle \Gamma}$ ц	ε, %
1	4	1878,33	1934,57	3,22
1	6	1132,00	1178,98	4,15
1	8	1280,86	1284,41	0,28
1	10	1871,31	1857,58	0,73
1	12	2688,61	2656,63	1,19
1	14	3671,76	3626,34	1,24
1	16	4816,77	4752,32	1,34
1	18	6071,60	6114,99	0,71

Власні частоти розраховані МСЕ та частоти

отримані експериментально [28]

Відхилення власних частот, отриманих методом скінченних елементів реалізованого на FEMAP, від власних частот, отриманих методом голографічної інтерферометрії [28], не перевищує 4,5%.

Порівняння форм власних коливань, отриманих чисельним методом та експериментальним [28], представлені на рис. 3.2.

Експериментально отримані форми [28]


```
m = 1, n = 4
```


m = 2, n = 4

m = 2, n = 6

Рис. 3.2. Форми власних коливань консольної кругової циліндричної оболонки отримані двома різними методами

Аналізуючи частоти, наведені в порівняльній таблиці 3.5 та форми власних коливань, представлені на рис. 3.2, можна дійти висновку, що отримані двома методами результати є достовірними. 3.2. Розрахунок частот та форм вільних коливань кругової циліндричної оболонки при різних граничних умовах

У пункті 3.1 проведено аналіз достовірності застосування запропонованого чисельного методу для розв'язання задач про визначення частот та форм вільних коливань оболонкових конструкцій. При вивченні спектру частот вільних коливань кругових ізотропних оболонок при різних видах закріплення було обґрунтовано вибрано тип та розмір скінченного елемента, отримано частоти з малим відхиленням від частот, отриманих експериментально, та виконано порівняння форм власних коливань з інтерференційними картинами [28]. Добре отриманими узгодження отриманих результатів з результатами, отриманими іншими авторами, дає змогу застосовувати запропоновану методику до розв'язування задач про вільні коливання тонкостінних циліндричних оболонок різних поперечних перерізів з сталою та змінною товщиною при різних граничних умовах.

3a вищеописаної досліджується допомогою методики спектр резонансних частот і форми коливань кругової циліндричної ізотропної оболонки висотою h = 120 мм, товщиною d = 2 мм та радіусом серединної поверхні R_c = 43,547 мм при різних граничних умовах які накладені на всю поверхню нижнього торця, верхній торець вільний. Матеріалом оболонки вибиралась сталь 40X з модулем Юнга $E = 214 \ \Gamma \Pi a$, коефіцієнтом Пуассона $\rho = 7820 \kappa c/m^3$. Скінченно-елементна v = 0.32, густиною розбивка проводилась лінійними восьмикутними solid-елементами розміром сторони 1 мм. Види граничних умов описані в пункті 3.1.

Резонансні частоти при кожному типі закріплення нижнього торця по площині та відхилення від частот при жорсткому закріплені у відсотках приведені в таблиці 3.6 та у вигляді гістограм (рис. 3.3).

Власні частоти круглої циліндричної оболонки при різних граничних

умовах на одному торці, інший торець вільний

т	n	Власні частоти f , Γu							$\varepsilon_{_{3akpinnehhg}} = rac{f_c - f_{_{3akpinnehhg}}}{f_c} \times 100\%$			
		f_c	f_{Sc}	f_{S}	f_{Sf}	f_{Sl}	f_F	ε _{sc}	ε	ε _{Sf}	ε _{sl}	ε _F
1	4	1836	1836	755	755	719	716	0,0	58,9	58,9	60,8	61,0
1	6	2266	2266	2076	2076	2028	2022	0,0	8,4	8,4	10,5	10,8
1	8	3977	3977	3929	3929	3877	3867	0,0	1,2	1,2	2,5	2,8
1	10	6318	6318	6299	6299	6249	6231	0,0	0,3	0,3	1,1	1,4
1	12	9155	9155	9145	9145	9098	9072	0,0	0,1	0,1	0,6	0,9
2	4	6476	6476	6139	6139	2905	852	0,0	5,2	5,2	55,1	86,8
2	6	4812	4812	4316	4316	2671	2222	0,0	10,3	10,3	44,5	53,8
2	8	5302	5302	4990	4990	4228	4092	0,0	5,9	5,9	20,3	22,8
2	10	7231	7231	7057	7057	6551	6465	0,0	2,4	2,4	9,4	10,6
2	12	9935	9935	9826	9826	9392	9309	0,0	1,1	1,1	5,5	6,3

З таблиці 3.6 видно, що власні частоти кругової оболонки при жорсткому та шарнірному закріплені нижнього торця по площині не відрізняються, тому є необхідним більш детально дослідити частоти при різних варіаціях шарнірного закріплення. Програмний засіб дозволяє накладати граничні умови не тільки на площини, але й на криві та точки, що належать тілу. Використовуючи цю можливість накладемо умови шарнірного закріплення тільки на криві лінії поверхні нижнього торця оболонки в такій послідовності:

- шарнірне закріплення двох нижніх контурів оболонки (sc_l^l);
- шарнірне закріплення зовнішнього нижнього контуру оболонки (sc^{l});
- шарнірне закріплення внутрішнього нижнього контуру оболонки (*sc*₁).

Резонансні частоти кругової оболонки при різних видах шарнірного закріплення нижнього торця по кривим лініям та відхилення від частот оболонки при шарнірному закріплені по площині у відсотках приведені в таблиці 3.7 та у вигляді гістограм (рис. 3.4).

Таблиця 3.7

Власні частоти кругової циліндричної оболонки при шарнірному закріпленні по різним кривим площини нижнього торця

m	п	Вла	сні час	тоти ƒ	, Гц	$\varepsilon_{\kappa p u \beta a} = \frac{f_{Sc} - f_{Sc \kappa p u \beta a}}{f_{Sc}} \times 100\%$			
		f_{Sc}	$f_{{\scriptscriptstyle S} c_l^l}$	f_{Sc^l}	f_{Sc_l}	$\epsilon_{sc_l^l}$	$\epsilon_{_{Sc}l}$	ε _{Scl}	
1	4	1836	1815	1748	1520	1,14	4,79	17,21	
1	6	2266	2260	2245	2171	0,26	0,93	4,19	
1	8	3977	3975	3973	3943	0,05	0,10	0,85	
1	10	6318	6317	6317	6301	0,02	0,02	0,27	
1	12	9155	9154	9154	9145	0,01	0,01	0,11	
2	4	6476	6446	6386	6137	0,46	1,39	5,23	
2	6	4812	4790	4774	4406	0,46	0,79	8,44	
2	8	5302	5290	5286	5026	0,23	0,30	5,21	
2	10	7231	7225	7223	7063	0,08	0,11	2,32	
2	12	9935	9932	9930	9825	0,03	0,05	1,11	

Рис. 3.4. Гістограма власних частот кругової циліндричної оболонки при шарнірному закріплені по різним кривим площини торця

Форми коливань для оболонок з різними видами закріплення на деяких частотах наведені на рис. 3.5. Переміщення точок оболонок для візуалізації показані в десятикратному збільшенні.

Рис. 3.5. Форми коливань кругової оболонки з різними видами закріплення

Форма коливань m = 1, n = 4 на власній частоті f = 1836 Гц поверхні жорстко закріпленої кругової оболонки представлені на рис. 3.6.

Рис. 3.6

Форма коливань m = 1, n = 6 на власній частоті f = 2266 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.7.

Рис. 3.7

Форма коливань m = 1, n = 8 на власній частоті f = 3977 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.8.

Рис. 3.8

Форма коливань m = 1, n = 10 на власній частоті f = 6318 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.9.

Рис. 3.9

Форма коливань m = 1, n = 12 на власній частоті f = 9155 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.10.

Рис. 3.10

Форма коливань m = 2, n = 4 на власній частоті f = 6476 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.11.

Рис. 3.11

Форма коливань m = 2, n = 6 на власній частоті f = 4812 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.12.

Рис. 3.12

Форма коливань m = 2, n = 8 на власній частоті f = 5302 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.13.

Рис. 3.13
Форма коливань m = 2, n = 10 на власній частоті f = 7231 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.14.

Рис. 3.14

Форма коливань (*a*) m = 2, n = 12 на власній частоті f = 9935 Гц жорстко закріпленої кругової оболонки представлена на рис. 3.15.

Рис. 3.15

При дослідженні коливань в обраному спектрі частот спостерігаються симетричні та несиметричні форми коливань з дуже малим відхиленням частот. Зауважимо, що при цьому вектор спостереження не змінювався. Як приклад наведемо форми коливань при m=1, n=4 (рис 3.16 *a*)) та m=2, n=4 (рис 3.16 *б*)).

Симетричні форми власних коливань Несиметричні форми власних коливань

Рис 3.16. б)

Розрахунок вільних коливань кругової циліндричних оболонок еквівалентної маси при різних видах закріплення площини торця на основі методу скінченних елементів із застосуванням комплексу FEMAP показав:

частоти при жорсткому та шарнірному закріпленні однакові (перша

група закріплень);

- частоти при шарнірному обпиранні та вільному обпиранні однакові (друга група закріплень);

- частоти при ковзаючому закріпленні та незакріпленому контурі при m = 1 практично однакові для всіх n, а при m = 2 збіжність проявляється лише при n > 8 (третя група закріплень);

- значне відхилення частот різних груп закріплень спостерігається на формах коливань з кількістю півхвиль по контуру n = 4 і n = 6;

- мале відхилення частот різних груп закріплень спостерігається на формах коливань з кількістю півхвиль по контуру n = 10 і n = 12;

найнижчі частоти спостерігаються при вільних торцях;

Порівняння частот кругової оболонки при різних способах шарнірного закріплення по кривим площини торця показало:

- розбіжність частот при різних способах задавання шарнірного закріплення не перевищує 18%;

- найбільші частоти спостерігаються при шарнірному закріпленні по всій площині торця оболонки;

- найменші частоти спостерігаються при шарнірному закріпленні вздовж внутрішньої лінії торця оболонки.

3.3. Розрахунок частот та форм вільних коливань некругової циліндричної оболонки при різних граничних умовах

Розглядається некругова циліндрична ізотропна (сталь 40Х) оболонка висотою h = 120 мм, товщиною d = 2 мм та півосями серединної поверхні $a_c = 50,810 \text{ мм}$ і $b_c = 36,285 \text{ мм}$ при таких самих граничних умовах як для кругової оболонки в пункті 3.2. Півосі серединної поверхні вибирались таким чином, щоб маса некругової циліндричної оболонки дорівнювала масі кругової циліндричної оболонки, а значення ексцентриситету еліптичного поперечного перерізу становило $\varepsilon = 0,7$. Резонансні частоти при кожному виді закріплення торця по площині з урахуванням відхилення від частот при жорсткому закріпленні у відсотках приведені в таблиці 3.8 та у вигляді гістограм (рис. 3.17).

Таблиця 3.8

Власні частоти неругової циліндричної оболонки при різних граничних умовах на одному торці, інший торець вільний

т	п	Власні частоти <i>f</i> , Гц						$\varepsilon_{_{3akpinnehhs}} = \frac{f_c - f_{_{3akpinnehhs}}}{f_c} \times 100\%$				
		f_c	f_{Sc}	f_{S}	f_{Sf}	f_{Sl}	f_F	ε _{sc}	ε _s	ε _{Sf}	ε _{sl}	ε _F
1	4	1712	1712	728	728	692	690	0,0	57,5	57,5	59,6	59,7
1	6	2154	2154	1992	1992	1944	1938	0,0	7,5	7,5	9,7	10,0
1	8	3849	3849	3794	3794	3744	3732	0,0	1,4	1,4	2,7	3,0
1	10	6129	6129	6107	6107	6059	6041	0,0	0,4	0,4	1,1	1,4
1	12	8963	8963	8952	8952	8907	8883	0,0	0,1	0,1	0,6	0,9
2	4	6159	6159	5821	5821	2691	824	0,0	5,5	5,5	56,3	86,6
2	6	4488	4488	4046	4046	2544	2137	0,0	9,8	9,8	43,3	52,4
2	8	4895	4895	4639	4639	4416	3954	0,0	5,2	5,2	9,8	19,2
2	10	7072	7072	6882	6882	6366	6270	0,0	2,7	2,7	10,0	11,3
2	12	9748	9748	9631	9631	9196	9112	0,0	1,2	1,2	5,7	6,5

Резонансні частоти некругової циліндричної оболонки при різних видах шарнірного закріплення торця по кривих лініях з урахуванням відхилення від частот при шарнірному закріпленні по площині у відсотках приведені в порівняльній таблиці 3.9 та у вигляді гістограм (рис. 3.18).

m n		Вла	сні час	тоти ƒ	, Гц	ε _{закріплення} =	$\frac{f_{Sc} - f_{Sc-3akpinn}}{f_{Sc}}$	^{аення} ×100%
		f_{Sc}	$\overline{f}_{Sc_l^l}$	$\overline{f_{Sc^l}}$	f_{Sc_l}	$\epsilon_{sc_l^l}$	ε _{sc} l	ε _{scl}
1	4	1712	1693	1634	1420	1,11	4,56	17,06
1	6	2154	2149	2136	2058	0,23	0,84	4,46
1	8	3849	3848	3844	3815	0,03	0,13	0,88
1	10	6129	6128	6127	6112	0,02	0,03	0,28
1	12	8963	8962	8962	8953	0,01	0,01	0,11
2	4	6159	6133	6082	5833	0,42	1,25	5,29
2	6	4488	4470	4449	4127	0,40	0,87	8,04
2	8	4895	4884	4870	4651	0,22	0,51	4,98
2	10	7072	7064	7059	6898	0,11	0,18	2,46
2	12	9748	9744	9740	9635	0,04	0,08	1,16

Власні частоти некругової циліндричної оболонки при шарнірному

закріпленні різних кривих ліній площини торця

Рис. 3.18. Гістограма власних частот некругової циліндричної оболонки при різних граничних умовах накладених на площину торця

Форми коливань m = 1, n = 4 некругової оболонки з різними видами закріплення зображено на рис. 3.19 *а*. Переміщення точок оболонок для візуалізації показані в десятикратному збільшенні.

Форми коливань m = 2, n = 4 некругової оболонки з різними видами закріплення зображено на рис. 3.19 б.

Форма коливань m = 1, n = 4 на власній частоті f = 1712 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.20.

Рис. 3.20

Форма коливань m = 1, n = 6 на власній частоті f = 2154 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.21.

Рис. 3.21

Форма коливань m = 1, n = 8 на власній частоті f = 3849 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.22.

Рис. 3.22

Форма коливань m = 1, n = 10 на власній частоті f = 6129 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.23.

Рис. 3.23

Форма коливань m = 1, n = 12 на власній частоті f = 8963 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.24.

Рис. 3.24

Форма коливань m = 2, n = 4 на власній частоті f = 6159 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.25.

Рис. 3.25

Форма коливань m = 2, n = 6 на власній частоті f = 4488 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.26.

Рис. 3.26

Форма коливань m = 2, n = 8 на власній частоті f = 4895 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.27.

Рис. 3.27

Форма коливань m = 2, n = 10 на власній частоті f = 7072 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.28.

Рис. 3.28

Форма коливань m = 2, n = 12 на власній частоті f = 9748 Гц жорстко закріпленої некругової оболонки представлена на рис. 3.29.

При дослідженні коливань в обраному спектрі частот спостерігаються симетричні та несиметричні форми коливань з більшим відхиленням частот в

порівнянні з відхиленнями між частотами для кругової оболонки, що можна пояснити еліптичністю поперечного перерізу. Як приклад наведемо форми коливань при m = 1, n = 4 (рис 3.30 *a*) та m = 2, n = 4 (рис 3.30 *б*).

Рис 3.30.

Розрахунок вільних коливань некругової циліндричної оболонки еквівалентної маси при різних видах закріплення площини торця на основі методу скінченних елементів із застосуванням комплексу FEMAP показав:

- частоти при жорсткому та шарнірному закріпленні однакові (перша група закріплень);

- частоти при шарнірному обпиранні та вільному обпиранні однакові (друга група закріплень);

- частоти при ковзаючому закріпленні та незакріпленому контурі при m = 1 практично однакові для всіх n, а при m = 2 збіжність проявляється лише при n > 8 (третя група закріплень);

- значне відхилення частот різних груп закріплень спостерігається на формах коливань з кількістю півхвиль по контуру n = 4 і n = 6;

- мале відхилення частот різних груп закріплень спостерігається на формах коливань з кількістю півхвиль по контуру n = 10 і n = 12;

- найнижчі частоти спостерігаються при вільних торцях.

Порівняння частот неругової оболонки при різних способах шарнірного закріплення по кривим площини торця показало:

- розбіжність частот при різних способах задавання шарнірного закріплення не перевищує 18%;

- найбільші частоти спостерігаються при шарнірному закріпленні по всій площині торця оболонки;

- найменші частоти спостерігаються при шарнірному закріпленні вздовж внутрішньої лінії торця оболонки.

3.4. Розрахунок частот та форм вільних коливань консольно закріплених циліндричних оболонок еліптичного поперечного перерізу з різних матеріалів

Розглядалися три консольно закріплені ізотропні циліндричні оболонки еліптичного поперечного перерізу з різних матеріалів: сталь (модуль Юнга $E = 214 \Gamma\Pi a$, коефіцієнт Пуассона v = 0,32, густина $\rho = 7820 \kappa a/m^3$), алюміній (модуль Юнга $E = 71 \Gamma\Pi a$, коефіцієнт Пуассона v = 0,34, густина $\rho = 2710 \kappa a/m^3$), мідь (модуль Юнга $E = 110 \Gamma\Pi a$, коефіцієнт Пуассона v = 0,35, густина $\rho = 8920 \kappa a/m^3$). Геометрія оболонок та розбивка скінченними елементами вибирались такі самі, як у випадку вище розглянутої задачі в пункті 3.3. Резонансні частоти приведені в порівняльних таблицях 3.10 і у вигляді гістограм (рис. 3.31).

Таблиця 3.10

m	n	f , Гц				
m	11	Сталь	Алюміній	Мідь		
1	4	1712	1676	1150		
1	6	2155	2113	1456		
1	8	3849	3776	2605		
1	10	6131	6015	4150		
1	12	8962	8793	6068		
2	4	6160	6025	4131		
2	6	4488	4394	3018		
2	8	4896	4797	3302		
2	10	7073	6938	4785		
2	12	9748	9564	6600		

Власні частоти коливань циліндричних оболонок еліптичного

поперечного перерізу з різних матеріалів

Рис. 3.31. Гістограми власних частот циліндричних оболонок еліптичного поперечного перерізу з різних матеріалів

Порядок виникнення форм коливань для оболонок з різних матеріалів є однаковим і не залежить від фізико-механічних характеристик.

Аналізуючи отримані дані, можна зробити висновок про те, що частоти вільних коливань при однакових геометричних параметрах оболонок із сталі і алюмінію мають незначну відмінність через невелику відмінність швидкості розповсюдження об'ємного розширення, яка залежить від модуля Юнга і густини матеріалу $c = \sqrt{E/\rho}$. Частоти для оболонок з міді при ідентичній геометрії в 1,49 разу менші відповідних частот оболонок із сталі, що відповідає відношенню відповідних швидкостей поздовжніх хвиль $\frac{c_{cmaлb}}{c_{medb}} = 1,49$.

3.5. Розрахунок частот та форм вільних коливань консольно закріпленої некругової циліндричної оболонки змінної товщини

3.5.1. Випадок зміни товщини за лінійним законом вздовж твірної

Розглядалася консольно закріплена ізотропна циліндрична оболонка еліптичного поперечного перерізу змінної товщини. Геометрія оболонки обиралась із збереженням висоти та маси відповідно до оболонки сталої товщини, фізико-механічні властивості та розбивка скінченними елементами вибирались такі самі, як у вище розглянутих задачах. Товщина оболонки змінюються лінійно вздовж твірної від 1 *мм* до 3 *мм*. Розглядалися два варіанти жорсткого закріплення:

- по торцю товщиною $d = 1 \, MM$, інший край вільний;
- по торцю товщиною $d = 3 \, MM$, інший край вільний.

Резонансні частоти приведені в порівняльних таблицях 3.11 і у вигляді гістограм (рис. 3.32), де при *d* = 2 наведені частоти циліндричної оболонки сталої товщини.

Таблиця 3.11

	- F - F							
m	n	f , Гų						
т	п	d = 1	<i>d</i> = 2	<i>d</i> = 3				
1	4	1471	1712	2104				
1	6	2654	2155	1899				
1	8	4281	3849	2866				
1	10	6135	6131	4161				
1	12	8240	8962	5786				
2	4	5128	6160	6994				
2	6	4242	4488	4841				
2	8	5743	4896	4848				
2	10	8361	7073	6632				
2	12	10807	9748	8786				

Власні частоти коли	вань циліндричні	их оболонок	еліптичного	поперечного
•	·· ·	••	• •	•
переріз	у сталої та змінно	01 товшини в	зловж твірноі	

Рис. 3.32. Гістограми власних частот для різних форм коливань сталевих циліндричних оболонок еліптичного поперечного перерізу сталої та змінної товщини вздовж твірної

Порівняння отриманих результатів для оболонок змінної за лінійним законом товщини вздовж твірної дає змогу зробити висновки:

- порядок появи форм коливань для розглянутих оболонок не є однаковим;

- частоти оболонки сталої товщини майже на всіх формах коливань знаходяться між частотами оболонок змінної товщини, що дає можливість виводити оболонку з резонансного режиму за рахунок модуляції товщини.

3.5.2. Випадок зміни товщини вздовж дуги контуру поперечного перерізу

Розглядалися консольно закріплені ізотропні циліндричні оболонки еліптичного поперечного перерізу сталої та змінної товщини еквівалентної маси. Геометрія оболонок, фізико-механічні властивості та розбивка скінченними елементами вибирались такі самі, як у випадку вище розглянутої задачі в пункті 3.3. Товщини оболонок уздовж великої півосі d_a і вздовж малої півосі d_b вказані в таблиці 3.12.

89

Значення товщини вздовж великої і малої півосей циліндричних

Вид оболо	d_a , мм	d_b , мм	
сталої товщини	$d_a = d_b$	2	2
змінної	$d_a > d_b$	3	1,3
товщини	$d_a < d_b$	1	2,73

оболонок еліптичного поперечного перерізу

Власні частоти приведені в таблицях 3.13 і у вигляді гістограм (рис. 3.33).

Таблиця 3.13

Власні частоти для різних форм коливань сталевих циліндричних оболонок еліптичного поперечного перерізу сталої і змінної товщини

100	n	<i>f,</i> Гų						
m		$d_a < d_b$	$d_a = d_b$	$d_a > d_b$				
1	4	1565	1712	1801				
1	6	1992	2155	2119				
1	8	3678	3849	3755				
1	10	5829	6131	5896				
1	12	8493	8962	8610				
2	4	5800	6160	6369				
2	6	4456	4488	4386				
2	8	4817	4896	4733				
2	10	6714	7073	6848				
2	12	9245	9748	9374				

Рис. 3.33. Гістограми власних частот для різних форм коливань циліндричних оболонок еліптичного поперечного перерізу сталої і змінної товщини.

Форми коливань для оболонки із сталі на деяких частотах зображено на рис. 3.34, переміщення точок оболонки для візуалізації показані в десятикратному збільшенні.

Рис. 3.34. Форми коливань для оболонки із сталі на деяких частотах

Як і у випадку дослідження власних коливань оболонок сталої товщини для оболонок змінної товщини також спостерігаються симетричні та несиметричні форми коливань, як приклад наведемо форми коливань при

Рис 3.35

Порівняння розрахованих частот оболонок змінної товщини з частотами циліндричної оболонки сталої товщини еквівалентної маси, дає змогу зробити висновки:

- для форм коливань m = 1, n = 4 і m = 2, n = 4 при збільшенні товщини уздовж осі a резонансні частоти зростають і, навпаки, при збільшенні товщини уздовж осі b – резонансні частоти зменшуються; - для інших розглянутих форм частота вільних коливань оболонки сталої товщини вища в порівнянні з частотами вільних коливань оболонок змінної товщини, причому із збільшенням *n* різниця цих частот зростає.

3.6. Розрахунок частот та форм вільних коливань консольно закріплених циліндричних оболонок еліптичного поперечного перерізу еквівалентної маси з різним значенням ексцентриситету

За допомогою FEMAP побудовано геометрію консольно закріплених оболонок еквівалентної маси висотою h = 120 мм у вигляді циліндричних поверхонь еліптичного перерізу з різними значеннями ексцентриситету ε . Велика піввісь серединної поверхні a_c та мала піввісь серединної поверхні b_c в залежності від ε вказані в таблиці 3.14.

Таблиця 3.14

Значення великої і малої півосей еліптичної серединної поверхні циліндричних оболонок при різних значеннях ексцентриситету

	Е, ММ									
	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
a_c	43,547	43,657	43,992	44,574	45,444	46,674	48,386	50,810	54,434	60,656
b_c	43,547	43,438	43,103	42,512	41,651	40,421	38,709	36,285	32,661	26,439

Матеріалом оболонок вибиралась сталь 40Х з модулем Юнга $E = 214 \ \Gamma \Pi a$, коефіцієнтом Пуассона v = 0,32, густиною $\rho = 7820 \ \kappa c/m^3$. Резонансні частоти приведені в таблиці 3.15 та у вигляді графіків (рис. 3.36). Таблиця 3.15

Власні частоти для різних форм коливань циліндричних оболонок еліптичного поперечного перерізу при різних значеннях ексцентриситету

т	п	<i>f,</i> Гц											
		0=3	ε=0,1	ε=0,2	ε=0,3	ε=0,4	ε=0,5	ε=0,6	ε=0,7	ε=0,8	ε=0,9		
1	4	1836	1836	1835	1833	1827	1812	1779	1712	1576	1284		
1	6	2266	2266	2265	2263	2258	2245	2216	2154	2023	1727		
1	8	3977	3977	3976	3974	3967	3952	3919	3849	3703	3362		
1	10	6318	6317	6315	6310	6298	6273	6225	6129	5921	5381		

1	12	9155	9155	9154	9151	9143	9123	9075	8963	8677	7934
2	4	6476	6476	6475	6470	6456	6419	6338	6159	5769	4901
2	6	4812	4812	4810	4804	4788	4748	4661	4488	4145	3441
2	8	5302	5302	5300	5293	5271	5219	5109	4895	4486	3661
2	10	7231	7230	7229	7225	7217	7199	7161	7072	6819	5975
2	12	9935	9935	9935	9932	9924	9904	9858	9748	9480	8715

Продовження таблиці 3.15

Рис. 3.36. Графіки залежності власної частоти від є при однакових формах коливань

Форми коливань для оболонок з різними значеннями ексцентриситету на деяких частотах зображено на рис. 3.37. *а*, *б*. Переміщення точок оболонок для візуалізації показані в десятикратному збільшенні.

Рис. 3.37. б. Форми коливань для оболонки з різними значеннями є.

Аналіз отриманих результатів дає змогу зробити висновки:

- порядок виникнення форм коливань для всіх оболонок зберігається;
- спостерігається зменшення власної частоти при збільшені ексцентриситету;
- із збільшенням значення є від 0 до 0,5 залежність при однакових формах частот від ексцентриситету має лінійний характер, відхилення частот циліндричних оболонок еліптичного поперечного перерізу від кругової не перевищує 1,5%;
- в діапазоні ε від 0,5 до 0,9 залежність при однакових формах частот від ексцентриситету є спадною квадратичною;
- на формах при m = 1, n = 4 спостерігається візуальна мутація форм починаючи із значення ексцентриситету 0,7, а при m = 2, n = 4 3 0,4.

Висновки до третього розділу

 Проведено аналіз достовірності отриманих результатів на основі методу скінченних елементів, а саме: при розрахунку частот вільних коливань кругових ізотропних оболонок при різних видах закріплення обґрунтовано вибрано вид та розмір скінченного елемента; при розв'язуванні тестових задач отримано частоти з малим відхиленням від частот, визначених як чисельно так і експериментально іншими авторами. Добре узгодження отриманих результатів дає змогу застосовувати запропоновану методику до розв'язування задач про вільні коливання тонкостінних циліндричних оболонок різних поперечних перерізів з сталою та змінною товщиною при різних граничних умовах.

2. За допомогою запропонованого чисельного підходу, а саме методу скінченних елементів реалізованого на програмному засобі FEMAP проведено розрахунки вільних коливань кругових та некругових циліндричних оболонок з різними граничними умовами на одному торці, інший торець вільний; циліндричних оболонок еліптичного поперечного перерізу з трьох різних матеріалів; оболонок змінної товщини вздовж твірної та вздовж дуги поперечного перерізу; консольно закріплених циліндричних оболонок еліптичного поперечного перерізу з різним значенням ексцентриситету. Виявлено закономірності у розподілі частот і форм вільних коливань.

РОЗДІЛ 4

ЕКСПЕРИМЕНТАЛЬНЕ ВИЗНАЧЕННЯ ЧАСТОТ ТА ФОРМ ВІЛЬНИХ КОЛИВАНЬ МЕТОДОМ СТРОБОГОЛОГРАФІЧНОЇ ІНТЕРФЕРОМЕТРІЇ

4.1. Основні етапи проведення експерименту. Виготовлення та підготовка об'єкту дослідження

розв'язання експериментального поставлених задач були Для виготовлені три циліндричні оболонки еквівалентної маси з високолегованої сталі марки 40X (модуль Юнга $E = 214 \Gamma \Pi a$, коефіцієнт Пуассона v = 0,26, густина $\rho = 7820 \kappa c/m^3$) методом точіння на ЧПУ станку з припуском діаметр. Остаточна обробка здійснювалась 0.05 ММ на на колошліфувальному і внутрішньо-шліфувальному станку для забезпечення точності геометричних параметрів.

Кругова тонкостінна оболонка вважається ізотропною однорідною і в точності циліндричною з круговим поперечним перерізом. Оболонка має такі параметрами: висота h = 120 мм, радіус серединної поверхні $R_c = 43,547$ мм, товщина d = 2 мм, відношення товщини до радіусу серединної поверхні $d / R_c = 0,046$ (рис. 4.1).

Некругова тонкостінна оболонка сталої товщини вважається ізотропною однорідною і в точності еліптичною з параметрами: висота h = 120 мм, велика піввісь a = 50,8 мм, мала піввісь b = 36,295 мм (рис. 4.2). Зауважимо, що розміри оболонок обиралися за критерієм однаковості висоти та маси.

Оболонка змінної товщини вздовж дуги поперечного перерізу має такі параметри: висота $h = 120 \, \text{мm}$, велика піввісь серединної поверхні $a = 50,8 \, \text{мm}$, мала піввісь серединної поверхні $b = 36,295 \, \text{мm}$, товщина вздовж великої півосі $d_a = 1 \, \text{мm}$, товщина вздовж малої півосі $d_b = 2,73 \, \text{мm}$ (рис. 4.3).

Оболонка 1 (рис. 4.4) фіксується через масивне тіло 2, яке виточена разом з нею, у затискному пристрої 3 на масивній плиті голографічної установки 4. Таким чином, вважається, що граничні умови жорсткого закріплення одного торця забезпечені, інший торець вільний.

Рис. 4.4

Для визначення власних частот та форм коливань оболонок методом стробоголографічної інтерферометрії використовується оптична схема голографічної установки (рис. 4.5). Досліджувана оболонка (8) жорстко закріплювалась на масивній плиті голографічного стенду. Джерелом когерентного випромінювання є Не-Ne лазер ЛГН-222 (1), промінь якого, пройшовши через електрооптичний модулятор МЛ-3 (3) і відбившись від дзеркала (4), ділиться на два променя за допомогою світлоподілювача (6). Відбитий від нього промінь дзеркалом (5) та мікрооб'єктивом (7) формує опорну світлову хвилю, яка освічує фотопластинку (11). З променя, який пройшов через світлоподілювач, сферичним дзеркалами (10) формується пучок освітлення оболонки, який відбившись від поверхні досліджуваного об'єкта дає нам предметну світлову хвилю.

Рис. 4.5

Для проведення експериментального дослідження оболонки розроблена методика, яка складається з наступних пунктів:

1. Підготовка поверхні оболонки до проведення експерименту. Для забезпечення дифузного розсіювання оболонкою світлового потоку, який попадає на неї, а також кращої відбивної спроможності світлового потоку на оболонку наноситься тонкий шар білої водоемульсійної фарби. Отримана матова поверхня володіє якісними дифузними властивостями при відбиванні світла.

2. Закріплення досліджуваної оболонки в спеціальному затискному пристрої. Сила затяжки оболонки контролюється за значенням її першої резонансної частоти. Якщо подальше збільшення сили затяжки оболонки не приводить до зміни першої резонансної частоти, то можна вважати, що граничні умови жорсткого закріплення забезпечені.

3. Збирання оптичної схеми голографічної установки. Необхідно досягти рівномірного освітлення зразка. Опорний промінь контролюється за допомогою матового екрана, встановленого на місці кріплення фотопластини. Встановити інтенсивність опорного пучка в 3-5 разів більшу за інтенсивність предметного. При компоновці оптичної схеми необхідно врахувати наступні зауваження:

а) частота просторової структури реєстрованої на голограмі не повинна перевищувати дозволеної здатності фотоемульсії. Це значить, що для будьякої точки голограми, кут між напрямами опорного і предметного променів не повинен перевищувати значення, яке визначається співвідношенням [99]:

$$2d\sin\varphi = \lambda$$
,

де:

d – мінімальна відстань між смугами інтерференції, що дозволяється фотоемульсією;

λ – довжина хвилі випромінювання лазера;

б) довжина когерентності лазера складає 0,2 м. При цьому оптична різниця ходу опорного і предметного пучків не повинна перевищувати цієї величини;

в) щоб зменшити величину фазових спотворень, що виникають в голографічному інтерферометрі в результаті впливу поверхневих потоків повітря і температурних розширень, необхідно зробити довжину хвилі променя після світлодільника якнайменшою.

4. Провести юстування електрооптичного модулятора.

5. Провести компонування і коригування оптичної схеми.

6. Встановити фотопластину.

7. На фотопластину зафіксувати голограму оболонки у стані спокою. Голограму обробити фотохімічним способом і після обробки повернути на місце експонування. Після висихання фотопластини, на поверхні оболонки, дивлячись через голограму, можна спостерігати паразитні смуги інтерференції, що з'являються внаслідок усадки фотоемульсії.

8. Включити віброзбудження оболонки. Через «опорну голограму» спостерігається процес виникнення коливань поверхні оболонки. При цьому рівень віброзбудження необхідно вибирати таким чином, щоб амплітуда нерезонансних коливань була в межах нижнього порогу чутливості інтерферометра. При плавній зміні частоти віброзбудження спостерігається момент виникнення резонансного режиму коливань. По смугах інтерференції визначаємо форму коливань.

9. Включити модуляцію променя прямокутними стробуючими імпульсами. Скважність стробування вибирати у межах 8-10. Під час спостереження через «опорну голограму» збудженої оболонки треба здійснити синхронізацію стробуючих імпульсів із амплітудними моментами коливань. Для цього за допомогою фазообертача змінюють у часі стробуючі імпульси і спостерігають за видимістю смуг інтерференції, які стають максимальними при синхронізації стробуючих імпульсів із амплітудними відхиленнями оболонки.

10. Зафіксувати частоти власних коливань.

11. Встановити фотопластинку на місце «опорної голограми» та зареєструвати форми коливань збудженої оболонки.

12. Обробити фотопластинки фотохімічним способом за допомогою проявника Д-19 і звичайного кислого фіксажу. Сушка голограм здійснюється у вертикальному положенні при нормальних умовах.

4.2 Експериментальне визначення частот та форм вільних коливань консольно закріпленої кругової циліндричної оболонки

За допомогою методу стробоголографічної інтерферометрії були отримані власні частоти кругової циліндричної оболонки. Результати представлені у вигляді таблиці 4.1 та гістограм (рис. 4.6) разом з результатами, отриманими чисельно в третьому розділі.

Таблиця 4.1

Порівняння експериментально та чисельно отриманих частот вільних коливань кругової циліндричної оболонки

п	т	$f_{\it eкcn.}$	$f_{uuc.}$	ε%
1	4	1923	1836	4,5
1	6	2352	2266	3,7
1	8	4210	3977	5,5
1	10	6653	6318	5,0
2	4	6584	6476	1,6
2	6	4873	4812	1,2
2	8	5361	5302	1,1
2	10	7254	7231	0,3

Рис.4.6. Гістограма експериментально та чисельно отриманих частот

Форма коливань m = 1, n = 4 отримана експериментально та чисельно представлена на рис. 4.7.

Форма коливань m = 1, n = 6 отримана експериментально та чисельно представлена на рис. 4.8.

f = 2266 Гц

Форма коливань m = 1, n = 8 отримана експериментально та чисельно представлена на рис. 4.9.

3.224 3.009 2.794

1.934

1.075 0.86 0.645 0.43 0.215

Форма коливань m = 1, n = 10 отримана експериментально та чисельно

Рис. 4.9

представлена на рис. 4.10.

Форма коливань m = 2, n = 6 отримана експериментально та чисельно представлена на рис. 4.11.

 $f = 4812 \ \Gamma y$

Форма коливань m = 2, n = 8 отримана експериментально та чисельно представлена на рис. 4.12.

3.464 3.233 1.155 0.924 0.693 0.462 0.231

Форма коливань m = 2, n = 10 отримана експериментально та чисельно представлена на рис. 4.13.

 $f = 7231 \, \Gamma y$

Форма коливань m=3, n=6 отримана експериментально та чисельно представлена на рис. 4.14.

3.295 3.076 2.556 2.417 2.197 1.977 1.977 1.977 1.538 1.318 1.328 1.

Форма коливань m = 4, n = 14 отримана експериментально та чисельно представлена на рис. 4.15.

f =17136 Гц

Форма коливань m = 5, n = 16 отримана експериментально та чисельно представлена на рис. 4.16.

Отримані експериментально частоти та форми вільних коливань кругової циліндричної оболонки дають можливість підтвердити правильність розрахунків методом скінченних елементів і зробити ряд висновків:

✓ спостерігається мале відхилення між експериментально визначеними частотами та частотами розрахованими чисельно на відповідних формах коливань для кругової оболонки, яке не перевищує 6%;

✓ порядок появи форм коливань при чисельних розрахунках та експерименті однаковий.

4.3 Експериментальне визначення частот та форм вільних коливань консольно закріпленої циліндричної оболонки еліптичного поперечного перерізу сталої товщини

За допомогою методу стробоголографічної інтерферометрії були отримані власні частоти циліндричної оболонки еліптичного поперечного перерізу сталої товщини. Результати представлені у вигляді таблиці 4.2 та гістограми (рис. 4.17) разом з результатами, отриманими чисельно в третьому розділі.

Таблиця 4.2

Порівняння експериментально та чисельно отриманих частот вільних коливань некругової циліндричної оболонки сталої товщини

т	п	f _{експ.} , Гц	$f_{\mathit{чис.}}$, Гц	ε,%
1	4	1723	1712	0,6
1	6	2306	2161	6,3
1	8	4097	3860	5,8
1	10	6519	6154	5,6
1	12	9493	8978	5,4
2	6	4782	4498	5,9
2	8	5197	4911	5,5

Рис.4.17. Порівняння частот для форм при *m* = 1

Форма коливань m = 1, n = 4 отримана експериментально та чисельно представлена на рис. 4.18.

Рис. 4.18

Форма коливань m = 1, n = 6 отримана експериментально та чисельно представлена на рис. 4.19.

Форма коливань m = 2, n = 6 отримана експериментально та чисельно представлена на рис. 4.20.

Форма коливань m = 2, n = 8 отримана експериментально та чисельно представлена на рис. 4.21.

Рис. 4.21

Чисельно отримані симетричні та несиметричні форми коливань підтверджуються експериментально, це добре спостерігається на першій формі для *m*=1, *n*=4 (рис. 4.22 *a*, б).

Рис. 4.22. а

 $f = 1734 \Gamma y$

Рис. 4.22. б

Отримані експериментально частоти та форми вільних коливань циліндричної оболонки еліптичного поперечного перерізу сталої товщини дають можливість підтвердити правильність розрахунків методом скінченних елементів і зробити ряд висновків:

✓ спостерігається мале відхилення між експериментально визначеними частотами та частотами розрахованими чисельно на відповідних формах коливань для циліндричної оболонки еліптичного поперечного перерізу, яке не перевищує 6,5%, а для першої частоти 1%;

 експериментально підтверджується наявність симетричних та несиметричних форм;

 порядок появи форм коливань при чисельних розрахунках та експерименті однаковий.

4.4 Експериментальне визначення частот та форм вільних коливань консольно закріпленої циліндричної оболонки еліптичного поперечного перерізу змінної товщини вздовж дуги контуру поперечного перерізу

За допомогою методу стробоголографічної інтерферометрії були отримані власні частоти циліндричної оболонки еліптичного поперечного

перерізу змінної товщини вздовж дуги контуру поперечного перерізу. Результати представленні у вигляді таблиці 4.3 та гістограм (рис. 4.23) разом з результатами, отриманими чисельно в третьому розділі.

Таблиця 4.3

Порівняння експериментально та чисельно отриманих частот вільних коливань некругової циліндричної оболонки змінної товщини

т	п	f _{експ.} , Гц	$f_{ extsf{uc.}}$, Гц	ε, %
1	4	1631	1565	4,0
1	6	2149	1992	7,3
1	8	3852	3678	4,5
1	10	5980	5829	2,5
1	12	8823	8493	3,7
2	4	5891	5800	1,5
2	6	4678	4456	4,7
2	8	5427	5117	5,7
2	10	7182	6714	6,5
2	12	9590	9245	3,6

Рис.4.23. Порівняння частот для форм при m = 1 та m = 2

Форма коливань m=1, n=4 отримана експериментально та чисельно представлена на рис. 4.24.

Рис. 4.24

Форма коливань m = 1, n = 6 отримана експериментально та чисельно представлена на рис. 4.25.

Форма коливань m=1, n=8 отримана експериментально та чисельно представлена на рис. 4.26.

Форма коливань m = 1, n = 10 отримана експериментально та чисельно представлена на рис. 4.27.

Рис. 4.27

Форма коливань m = 2, n = 6 отримана експериментально та чисельно представлена на рис. 4.28.

Форма коливань m = 2, n = 8 отримана експериментально та чисельно представлена на рис. 4.29.

Рис. 4.29

Форма коливань m = 2, n = 10 отримана експериментально та чисельно представлена на рис. 4.30.

Форма коливань m=3, n=18 отримана експериментально та чисельно представлена на рис. 4.31.

117

Форма коливань m = 5, n = 12 отримана експериментально та чисельно представлена на рис. 4.32.

Форма коливань m = 6, n = 12 отримана експериментально та чисельно представлена на рис. 4.33.

 $f = 21816 \ \Gamma u$

Чисельно отримані симетричні та несиметричні форми власних коливань підтверджуються експериментально, це добре спостерігається на

Рис.4.34.

Отримані експериментально частоти та форми вільних коливань циліндричної оболонки еліптичного поперечного перерізу змінної товщини дають можливість підтвердити правильність розрахунків методом скінченних елементів і зробити ряд висновків:

спостерігається мале відхилення між експериментально

визначеними частотами та частотами розрахованими чисельно на відповідних формах коливань для некругової оболонки, яке не перевищує 7,5%, а для першої частоти 4%;

 експериментально підтверджується наявність симетричних та несиметричних форм;

✓ порядок появи форм коливань при чисельних розрахунках та експерименті однаковий.

Висновки до четвертого розділу

- 1. Запропоновано методику проведення експерименту та оптичну схему установки.
- 2. циліндричної Проведено експерименти для кругової оболонки, циліндричних оболонок еліптичного поперечного перерізу сталої та змінної товщини вздовж дуги поперечного перерізу, в результаті яких отримані частоти та форми вільних коливань. Спостерігаються малі відхилення між експериментально визначеними частотами та частотами 8% розрахованими чисельно, які не перевищують для всіх досліджуваних оболонок, що свідчить про коректність застосування обох запропонованих методів. Порядок появи форм коливань при чисельних розрахунках експериментах однаковий всіх та для розглянутих оболонок. Експериментально підтверджується наявність симетричних та несиметричних форм, які краще спостерігаються для некругових оболонок.

ЗАГАЛЬНІ ВИСНОВКИ

У дисертаційній роботі розроблено ефективний чисельноекспериментальний підхід до розв'язання задачі про визначення частот та форм вільних коливань некругових циліндричних оболонок еліптичного поперечного перерізу з різними геометричними та механічними параметрами при різних граничних умовах. Проведено аналіз достовірності застосування запропонованого чисельного методу на тестових задачах за допомогою програмного комплексу Femap.

При цьому отримані такі конкретні результати:

- На основі розрахунків вільних коливань некругових циліндричних оболонок з еліптичним поперечним перерізом для випадку декількох ізотропних матеріалів отримано частотні коефіцієнти, які визначають залежність значень частот вільних коливань оболонки від механічних властивостей матеріалу і дають можливість з високим ступенем точності визначати частоти відповідної форми коливань оболонок з довільного ізотропного матеріалу при однакових геометричних параметрах та граничних умовах.
- Встановлені залежності вільних коливань циліндричних оболонок еліптичного поперечного перерізу від характеру зміни товщини дають можливість керувати спектром частот вільних коливань оболонкових конструкцій для уникнення резонансного режиму за рахунок модуляції зміни товщини оболонки.
- 3. Виявлені залежності вільних коливань некругових циліндричних оболонок з еліптичним поперечним перерізом від значення ексцентриситету дають можливість визначати коефіцієнти частотного переходу від кругової оболонки до еліптичної при збереженні маси та граничних умов, завдяки цьому можна прогнозувати частоти оболонок будь-якої еліптичності за відомими частотами кругової оболонки.
- 4. Результати експериментальних досліджень вільних коливань некругових циліндричних оболонок сталої та змінної товщини добре

узгоджуються з чисельними розрахунками, що свідчить про ефективність застосування обох підходів.

5. Реалізований у роботі чисельно-експериментальний підхід дає можливість досліджувати динамічні характеристики оболонкових конструкцій інших конфігурацій і може бути використаний для оцінки точності оболонкових моделей та інших чисельних підходів, а також при аналізі поведінки конкретних тонкостінних конструктивних елементів.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- Абдукадыров С.А. О дисперсии упругих волн в континуальной и разностной моделях деформируемых сред и конструкций / С.А. Абдукадыров, Н.В. Степаненко // Численные методы решения задач теории упругости и пластичности, VI всес.конф., часть II, Новосибирск, 1980. – С. 3-9.
- Агапов В.П. Метод конечних элементов в статике, динамике и устойчивости пространственных тонкостенные подкрепленных конструкций. Учебное пособие / В.П. Агапов – М.: Изд. АСВ, 2000. – 152 с.
- Акустико-эмиссионная диагностика конструкций / Л.Н. Степанова [и др.]. М.: Радио и связь, 2000. 280 с.
- Александров А.Я. Многослойные пластины и оболочки / А.Я. Александров, Л.М. Куршин // Тр. VII Всесоюз. конф. по теории оболочек и пластин. – М.: Наука, 1970. – С. 714-721.
- Алифанова О.А. Устойчивость и собственные колебания трехслойных оболочек вращения / О.А. Алифанова, В.Л. Ингульцев // Сопротивление материалов и теория сооружений. – К.: Будивельник, 1977. – №31. – С. 12-16.
- Амиро И.Я. Ребристые цилиндрические оболочки / И.Я. Амиро,
 В.А. Заруцкий, П.С. Поляков. К.: Наук. думка, 1973. 248 с.
- Андреев А.Н. К теории изгиба и колебаний упругих многослойных анизотропных пластин / А.Н. Андреев, Ю.В. Немировский // Прикладные проблемы прочности и пластичности. – Горький: Изд-во ГГУ, 1977. – №7. – С. 29-34.
- Андреев А.Н. Многослойные анизотропные оболочки и пластины / А.Н. Андреев, Ю.В. Немировский // Изгиб, устойчивость, колебания. – Новосибирск: Наука, 2001. – 287 с.
- Афанасьев СБ. О построении разрывных решений одномерных уравнений динамики упруго-пластических сред / С.Б. Афанасьев, В.Г. Баженов // Прикл. пробл. прочн. и пластичности. Статика и динамика деформируемых систем. – Горький: Изд-во ГГУ, 1980, – С. 76-82.

- 10. Бабаков И.М. Теория колебаний / И.М. Бабаков Л.: Наука, 1968. 650 с.
- Баженов В.Г. Вариационно-разностный метод решения двумерных задач динамики упруго-пластических оболочек / В.Г. Баженов, А.П. Шинкаренко // Прикл. пробл. прочн. и пластичности. – Горький: Изд- во ГГУ, 1976. – №3. – С. 61-69.
- Баженов В.Г. Исследование упруго-пластического выпучивания оболочек вращения при ударном нагружении / В.Г. Баженов, В.К. Ломунов // Прикл. пробл. прочн. и пластичности. – Горький: Изд-во ГГУ, 1975. №2. – С. 44-50.
- Баженов В.Г. Расчет осесимметричных оболочек переменной толщины при осесимметричных силовых и температурных динамических воздействиях. / В.Г. Баженов, М.А. Батанин // Уч.зап.Горьков.ун-та. Серия Механика. – Горький: Изд-во ГГУ, 1973. – №122. – С. 80-86.
- Баженов В.Г. Реализация метода подконструщий в нелинейных задачах динамики пространственных оболочечных конструкций / В.Г. Баженов, И.И. Солуянов, А.П. Шинкаренко // Прикл. пробл. прочн. и пластичности. – Горький: Изд-во ГГТ, 1978. – №8. – С.11-16.
- Бергман Р.М. Построение решений уравнений свободных колебаний некруговой цилиндрической оболочки / Р.М. Бергман, Л.А. Лобачинский // Изв. АН СССР, «Механика твердого тела», 1979. – №2 – С. 123-131.
- Бергман Р.М. Исследование свободных колебаний некруговых цилиндрических оболочек / Р.М. Бергман // Прикладная механика и математика. – 1973. – 37, №6. – 13 с.
- Беспалова Е.И. О свободных колебаниях пространственных тел с низким порядком симметрии упругих свойств / Е.И. Беспалова // Прикладная механика. – 2002. – Т. 38, № 1. – С. 111-116.
- Беспалова Е.И. Определение собственных частот существенно неоднородных оболочек вращения с учетом поперечной деформации / Е.И. Беспалова, Г.П. Урусова // Прикладная механика. – 2007. – Т. 43, №9. – С. 38-47.

- Бидерман В.Л. Применение метода прогонки для численного решения задач строительной механики / В.Л. Бидерман // Инженерный журнал. МТТ, 1967. – №5. – С. 65-66.
- Болотин В.В. Динамическая устойчивость упругих систем / В.В. Болотин – М.: Гостехиздат, 1956. – 600 с.
- 21. Болотин В.В. О плотности частот собственных колебаний тонких упругих оболочек / В.В. Болотин // ПММ. 1963. Т. 27, №2. С. 362-364.
- Болотин В.В. Современные направления в области динамики пластин и оболочек / В.В. Болотин // Труды II Всесоюзной конференции по теории пластин и оболочек. – К., 1962. – С.16-32.
- Болотин В.В. Современные проблемы строительной механики / В.В. Болотин, И.И. Гольденблат, А.Ф. Смирнов. – М.: Изд-во лит-ры по строительству, 1964. – 131 с.
- 24. Борисенко М.Ю. Експериментальне визначення власних частот тонкостінних циліндричних оболонок кругового та некругового поперечних перерізів / М.Ю. Борисенко // Тези доповіді Міжнародної наукової конференції «Математичні проблеми технічної механіки – 2015», 14-17 квітня 2015р., – Дніпропетровськ, Дніпродзержинськ, 2015. – С. 19.
- 25. Борисенко М.Ю. Чисельне визначення власних частот некругових циліндричних оболонок еліптичного поперечного перерізу з різних матеріалів / М.Ю. Борисенко // Тези доповіді Міжнародна науковопрактична конференція «Проблеми механіки та фізико-хімії конденсованого стану речовини» 17-19 вересня 2015., – Миколаїв, 2015. – С. 38.
- 26. Бочкарёв С.А. Собственные колебания частично заполненных жидкостью некруговых цилиндрических оболочек с учётом плескания свободной поверхности / С.А. Бочкарёв, С.В. Лекомцев // Вычислительная механика сплошных сред, 2014. – Т. 7, № 4. – С. 471-480.
- 27. Бреславский В.Е. О колебаниях цилиндрических оболочек /
 В.Е. Бреславский // Инженерный сборник, 1953. Т. 16 С. 109-118.
- 28. Будак В.Д. Колебания круглой цилиндрической оболочки, заполненной

жидкостью / В.Д. Будак, Ю.Г. Золотой, А.В. Овчаренко // Збірник наукових праць УДМТУ. – Миколаїв: УДМТУ, 1998. – №4. – 210 с.

- Будак В.Д. Теоретико-експериментальне дослідження оболонок постійної та змінної товщини еквівалентної маси / В.Д. Будак, О.Я. Григоренко, М.Ю. Борисенко // Тези доповідей Міжнародної наукової конференції «Математичні проблеми технічної механіки – 2011», 13-15 квітня 2011р., – Дніпропетровськ, Дніпродзержинськ, 2011. – С. 68.
- Вайнберг Д.В. Численные методы в теории оболочек и пластин / Д.В. Вайнберг // Тр. VI всес.конф. по теории оболочек и пластин. М.: Наука, 1966. С.890-895.
- Валишвили Н.В. Об одном алгоритме решения нелинейных краевых задач / Н.В. Валишвили // Прикл.матем. и механика, 1968. – Т.32, № 6 – С.1089-1092.
- Василенко М.В. Теорія коливань і стійкість руху: підручник. / М.В. Василенко, О.М. Алексейчук К.: Вища школа, 2004. 525 с.
- Василенко Н.В. Теория колебаний / Н.В. Василенко. К.: Вища школа, 1992. – 430 с.
- Вест Ч. Голографическая интерферометрия: Пер. с англ. / Ч. Вест М.: Мир, 1982. – 504 с.
- 35. Визначення резонансних частот тонких оболонок постійної та змінної товщини методом стробоголографічної інтерферометрії / В.Д. Будак, О.Я. Григоренко, С.В. Пузирьов, М.Ю. Борисенко // Тези доповідей XIII Всеукраїнської науково-методичніої конференції «Сучасні проблеми фізико-математичних наук та підготовка фахівців у цій галузі», 15-17 вересня 2011р., Миколаїв, 2011. С. 6.
- 36. Вільні коливання еліптичної оболонки змінної товщини / В.Д. Будак, О.Я. Григоренко, М.Ю. Борисенко, О.В. Бойчук // Вісник Київського національного університету імені Тараса Шевченка, серія: «Математика. Механіка», 2014. – 32, №2. – С. 32-37.
- 37. Влияние изменения толщины эллиптической оболочки на распределение

ее динамических характеристик / В.Д. Будак, А.Я. Григоренко, М.Ю. Борисенко, Е.В. Бойчук // Тези доповіді Міжнародної наукової конференції «Математичні проблеми технічної механіки – 2014», 14-17 квітня, 2014р. – Дніпропетровськ, Дніпродзержинськ, 2014. – С. 14.

- 38. Вплив ексцентриситету еліптичної оболонки на розподіл її динамічних характеристик / В.Д. Будак, О.Я. Григоренко, М.Ю. Борисенко, О.В. Бойчук // Вісник Київського національного університету імені Тараса Шевченка, серія: «Фізико-математичні науки», 2015. – 2. – С. 23-28.
- Выломов В.Н. Собственные колебания некруговых оболочек с сосредоточенными включениями / В.Н. Выломов, А.А. Малинин // Изв. АН СССР, МТТ, 1975. №4. С. 126-130.
- 40. Галлагер Р. Метод конечных элементов. Основы. Пер. с англ. /
 Р. Галлагер. М.: Мир, 1984. 428 с.
- 41. Гинзбург В.М. Голографические измерения / В.М. Гинзбург,
 Б.М. Степанов М.: Радио и связь, 1981. 296 с.
- 42. Годунов С.К. О численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений / С.К. Годунов // Успехи математических наук, 1961 Т.XVI, №3(99). С. 171-174.
- 43. Годунов С.К. Разностная схема для двумерных нестационарных задач газовой динамики и расчет обтекания с отошедшей ударной волной / С.К. Годунов, А.В. Забродин, Г.П. Прокопов // Журнал вычислительной математики и математической физики, 1961. – № 6. – С. 1020-1050.
- 44. Годунов С.К. Разностные схемы / С.К. Годунов, В.С. Рябенький. М.: Наука, 1977. – 439 с.
- 45. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидрогазодинамики / С.К. Годунов // Математический сборник, 1959. Т.3, № 47(89) С. 271-306.
- 46. Гольденвейзер А.Л. Дополнения и поправки к теории тонких оболочек Лява / А.Л. Гольденвейзер // Пластинки и оболочки. Под ред. А.А. Гвоздева. М.: Госстройиздат, 1939. – С. 85-105.

- 47. Гольденвейзер А.Л. Некоторые общие свойства колебаний тонкой упругой оболочки / А.Л. Гольденвейзер, В.Б. Лидский // Изв. АН СССР, ММТ. №2, 1974.
- 48. Гольденвейзер А.Л. Свободные колебания тонких упругих оболочек / А.Л. Гольденвейзер, В.Б. Лидский, П.Е. Товстик. М.: Наука, 1979. 384 с.
- 49. Гольденвейзер А.Л. Теория упругих тонких оболочек /
 А.Л. Гольденвейзер. М.: Наука, 1976. 512 с.
- 50. Гонткевич В.С. Собственные колебания пластинок и оболочек // В.С. Гонткевич – К.: Наук. думка, 1964. – 587 с.
- 51. Гончаренко И.Е. Метод конечных элементов в исследовании процессов осесимметричного деформирования конструкций при ударных воздействиях / И.Е. Гончаренко // Динамика пространственных конструкций. – К.: КИСИ, 1978. – С. 17-20.
- 52. Горячев А.П. Некоторые итоги и перспективы конечно-элементных исследований нелинейных проблем механики / А.П. Горячев, Е.И. Санков // Прикл. пробл. прочн. и пластичности. Горький: ПУ, 1979. Т.10. С. 26-40.
- 53. Грешников В.А. Акустическая эмиссия. Применение для испытания материалов и изделий / В.А. Грешников, Ю.Б. Дробот.– М.: Изд-во стандартов, 1976. – 272 с.
- 54. Григолюк Э.И. К формулировке уравнений трехслойных пластин и оболочек / Э.И. Григолюк, В.М. Корнев // Прочность и пластичность. М.: Наука, 1971. С. 40-46.
- 55. Григолюк Э.И. Неклассические теории колебаний стержней, пластин и оболочек / Э.И. Григолюк, И.Т. Селезов // Итоги науки и техники. Механика твердых деформируемых тел. М., 1973. Т.5. 272 с.
- 56. Григолюк Э.И. Устойчивость и колебания трехслойных оболочек / Э.И. Григолюк, П.П. Чулков. – М.: Изд-во МГУ, 1973. – 215 с.
- 57. Григолюк Э.И. Устойчивость и колебания трехслойных оболочек /
 Э.И. Григолюк, П.П. Чулков. М.: Машиностроение, 1973.

- 58. Григоренко А.Я. / Решение задач о свободных колебаниях конических оболочек переменной толщины / А.Я. Григоренко, С.А. Мальцев // Доп. НАН України, 2009. № 7. С. 63-69.
- 59. Григоренко А.Я. Исследование свободных колебаний некруговых цилиндрических оболочек с помощь метода сплайн-коллокации / А.Я. Григоренко, С.В. Пузырев, Е.А. Волчек // Мат. методи та фіз.-мех. поля, 2011. – 54, № 3. – С. 60-69.
- 60. Григоренко А.Я. О свободных колебаниях нетонких цилиндрических оболочек переменной толщины на основе метода сплайн-коллокации / А.Я. Григоренко, Т.Л. Ефимова, Л.В. Соколова // Мат. методи та фіз.мех. поля, 2010. – 53, №4. – С. 169-179.
- 61. Григоренко А.Я. Об одном подходе к исследованию колебаний полых пьезокерамических цилиндров конечной длины / А.Я. Григоренко, Т.Л. Ефимова, И.А. Лоза //Доповіді Національної академії наук України, 2009. № 6. С. 61-67.
- 62. Григоренко А.Я. Об одном подходе к исследованию свободных колебаний цилиндрических оболочек переменной в круговом направлении толщины в уточненной постановыке / А.Я. Григоренко, Т.Л. Ефимова, Л.В. Соколова // Мат. методи та фіз.-мех. поля, 2009. 52, №3. С. 103-115.
- 63. Григоренко А.Я. Применение метода сплайн-аппроксимации для решения задач об осесимметричных свободных колебаниях толстостенных ортотропных цилиндров / А.Я. Григоренко, Т.Л. Ефимова // Прикладная механика, 2008. Т. 44, № 10. С. 74-85.
- 64. Григоренко А.Я. Численное решение задачи о свободных колебаниях пологих оболочек переменной толщины в уточненной постановке / А.Я. Григоренко, А.Ю. Пархоменко // Доповіді Національної академії наук України, 2009. – № 12. – С. 50-54.
- 65. Григоренко А.Я. Экспериментальное исследование собственных колебаний толстостенной цилиндрической оболочки методом

голографической интерферометрии / А.Я. Григоренко, Ю.Г. Золотой, А.П. Пригода, И.Ю. Жук, В.В. Хоришко, А.В. Овчаренко / Мат. методи та фіз.-мех. поля, 2012. – 55, № 3. – С. 93-98.

- Григоренко Я.М. Розв'язання задач теорії оболонок на основі дискретноконтинуальних методів / Я.М. Григоренко, В.Д. Будак, О.Я. Григоренко. – Миколаїв: Іліон, 2010. – 294 с.
- 67. Григоренко Я.М. Численно-аналитическое решение задач механики оболочек на основе различных моделей / Я.М. Григоренко, Г.Г. Влайков, А.Я. Григоренко. – К.: Академпериодика, 2006. – 472 с.
- 68. Гулгазарян Г.Р. Волны типа Рэлея в полубесконечной замкнутой некруговой цилиндрической оболочке / Г.Р. Гулгазарян, К.Б. Казарян // Mechanics. Proceedings of National Academy of Sciences of Armenia, 1997. 50 (1). Pp. 27-33.
- 69. Гулгазарян Г.Р. Формула распределения частот цилиндрической оболочки с произвольной направляющей // Г.Р. Гулгазарян / Изв. АН СССР. Механика твердого тела, 1979. № 2. С.139-143.
- 70. Джоунс Р. Голографическая и спел-интерферометрия. Пер. с англ. /
 Р. Джоунс, К. Уайкс. М.: Мир, 1986. 328 с.
- Дивин А.Г. Методы и средства измерений, испытаний и контроля: учебное пособие. В 5ч / А.Г. Дивин, С.В. Пономарев, Г.В. Мозгова. – Тамбов: Изд-во ФГБОУ ВПО «ТГТУ», 2012. – Ч. 2. – 108 с.
- Дресвянников В.И. К исследованию упруго-пластических панелей при действии движущейся волны давления / В.И. Дресвянников, В.Ю. Лазарев, В.Ф. Макиенко // Прикл.пробл.прочн. и пластичности. – Горький: Изд-во ИУ, 1978. – №9. – С. 85-93.
- 73. Единый метод решения задач устойчивости и колебаний оболочек вращения / А.В. Кармишин [и др.] // - В кн.: Теория пластин и оболочек. – М.: Наука, 1971, – С. 141-146.
- 74. Експериментальне визначення власних частот тонкостінної оболонки з некруговим поперечним перерізом постійної товщини / В.Д. Будак,

О.Я. Григоренко, М.Ю. Борисенко, О.П. Пригода, В.В. Хоришко // Тези доповіді XIV Всеукраїнської науково-методичної конференції присвяченій 100-річчю з дня заснування МНУ ім. В.О. Сухомлинського «Сучасні проблеми фізико-математичних наук та підготовка фахівців у цій галузі», 12-14 вересня 2013р., – Миколаїв, 2013. – С. 5.

- 75. Ефимова Т.Л. Решение задач о свободных колебаниях толстостенных ортотропных неоднородных цилиндров / Т.Л. Ефимова // Мат. Методи та фіз.-мех. Поля, 2009. Т.52. С. 92-100.
- 76. Заруцкий В.А. Собственные колебания ребристых цилиндрических оболочек при низкой сдвиговой жесткости материала / В.А. Заруцкий, Н.Я. Прокопенко // Прикл. мех.: Международный научный журнал, 2005. 41, №4. С. 66-74.
- 77. Застрогин Ю.Ф. Контроль параметров движения с использованием лазеров / Ю.Ф. Застрогин. М.: Машиностроение, 1981. 176 с.
- Зенкевич О. Конечные элементы и аппроксимация. Пер. с англ. / О. Зенкевич, К. Морган. – М.: Мир, 1986. – 318 с.
- Зенкевич О. Метод конечных элементов в технике / О. Зенкевич. М.: Мир, 1975. – 541 с.
- Иванова Е.А. К вопросу об определении параметров жесткости нанооъектов / Е.А. Иванова, Д.А. Индейцев, Н.Ф. Морозов // Журнал технической физики, 2006. – Т.76, №10. – С. 74-80.
- Иванова Е.А. Об определении параметров жесткости нанооъектов / Е.А. Иванова, Д.А. Индейцев, Н.Ф. Морозов // Доклады Академии наук, 2006. – Т.410, №6. – С. 754-758.
- Иванюта Э.И. Определение частот свободных колебаний цилиндрической оболочки эллиптического сечения / Э.И. Иванюта,
 Р.М. Финкельштейн // – Исследования по упругости и пластичности. – Л.: Изд-во Ленинград. ун-та, №1, 1961.
- Ивенс Г.И. Механика и термодинамика биологических мембран / Г.И. Ивенс, З. Скейлак. – М.: Мир, 1982. – 304 с.

- 84. Исследование резонансных частот и форм колебаний лопаток компрессора ГТД с применением голографической интерферометрий / Р.Х. Макаева [и др.] // Авиационно-космическая техника и технология, 2011. №8(85). С. 57-60.
- 85. Исследование свободных колебаний цилиндрических оболочек постоянной и переменной толщины с помощью метода голографической интерферометрии / В.Д. Будак, А.Я. Григоренко, В.В. Хоришко, М.Ю. Борисенко // Прикладная механика, 2014. – 50, №1 – С. 101-109.
- 86. Кайно Г. Акустические волны: Устройства, визуализация и аналоговая обработка сигналов: Пер. с англ. / Г. Кайно. – М.: Мир, 1990. – 656 с.
- 87. Каиров А.С. Определение виброперемещений и напряжений при колебаниях конструктивно неоднородных оболочек методом голографической интерферометрии / А.С. Каиров, Ю.Г. Золотой // Теорет. и прикл. механика, 1998. – №28. – С. 112-118.
- Карнаухов В.Г. Исследование гармонических колебаний цилиндрической оболочки из физически нелинейного пьезоэлектрического материала / В.Г. Карнаухов, Я.В. Ткаченко // Приклад. механика, 2008. – 44, № 4. – С. 101-106.
- Кобелев В.Н. Динамика многослойных оболочек / В.Н. Кобелев,
 В.А. Потопахин // Отв. ред. И.И. Ворович. Ростов-на-Дону: Изд-во Ростов. ун-та, 1985. 159 с.
- 90. Ковалев А.Н. Линейная осесимметричная реакция составной оболочки вращения на ударную нагрузку / А.Н. Ковалев // МТТ, 1981. – №1. – С. 177-184.
- 91. Козаров М. Устойчивость и динамика ортотропной эллиптической цилиндрической оболочки / М. Козаров // Известия на института по технической механики». – София. – Т.1, 1964.
- 92. Козлова О.С. Современные тенденции развития САПР в механике / О.С. Козлова, С.И. Гоменюк // Вісник Запорізького національного університету, 2014. – №1. – С. 38-51.

- 93. Костромин В.П. Колебания незамкнутых цилиндрических оболочек переменной кривизны / В.П. Костромин, В.И. Мяченков // Прикладная механика, 1972. – Т.8, №8. – С. 113-116.
- 94. Крылов А.Н. О некоторых дифференциальных уравнениях математической физики / А.Н. Крылов – М.-Л.: Гостехтеориздат., 1950. – 368 с.
- 95. Кузнецов Ю.М. Высокочастотные колебания ортотропных цилиндрических оболочек некругового поперечного сечения / Ю.М. Кузнецов, Ю.П. Жигалко // Исслед. по теор. пластин и оболочек, 1981. №16. С. 172-183.
- 96. Кузнецов Ю.М. Исследование собственных колебаний цилиндрических оболочек эллиптического сечения методом голографической интерферометрии / Ю.М. Кузнецов, А.К. Шалабанов // Исслед. по теор. пластин и оболочек, 1984. – №17, часть 2. – С. 133-140.
- 97. Кукуджанов В.Н. Численные методы решения неодномерных задач динамики упруго-пластических сред / В.Н. Кукуджанов // Численные методы решения задач теории упр. и пласт. Часть І. Материалы VI всес. конф., 1980. – Новосибирск. – С. 105-120.
- 98. Куликов Г.М. Нелинейные колебания многослойных пластин / Г.М. Куликов, Ю.В. Кулешов // Вестн. Тамб. ун-та. Сер. Естеств. и техн. н., 2004. – Т.9, №2. – С. 264-267.
- 99. Ландсберг Г.С. Оптика / Г.С Ландсберг. М.: Наука, 1976. 928 с.
- 100. Лекомцев С.В. Конечно-элементные алгоритмы расчёта собственных колебаний трёхмерных оболочек / С.В. Лекомцев // Вычислительная механика сплошных сред, 2012. Т.5, №2. С. 233-243.
- 101. Леонтьев М.К. Тензометрирование в авиационных газотурбинных двигателях: Учебное пособие / М.К. Леонтьев. – М.: Изд-во МАИ, 2000. – 36 с.
- 102. Лурье А.И. Общая теория упругих тонких оболочек / А.И. Лурье // ПММ, 1940. Т.4, №2. С. 7-4.
- 103. Лурье А.И. Равновесие упругой симметрично-нагруженной сферической оболочки / А.И. Лурье // ПММ, 1943. Т.7, №6. С. 393-404.

104. Ляв А. Математическая теория упругости / А. Ляв // ОНТИ, 1935. – 674 с.

- 105. Малышев А.П. Нелинейные волновые процессы в оболочках вращения /
 А.П. Малышев, В.И. Паничкин // Известия АН СССР. МТТ, 1976. №4.
 С. 175-178.
- 106. Малышев А.П. Исследование переходных процессов в оболочечных конструкциях на основе схемы с минимальной дисперсией / А.П. Малышев // Изв. АН СССР. МТТ, 1981. – № 3. – С. 66-73.
- 107. Малышев А.П. Одномерные переходные процессы в оболочечной конструкции при импульсном нагружении / А.П. Малышев, В.И. Паничкин // Труды Х всес. конф. по теории оболочек и пластин. Тбилиси: Мецниереба, 1975. С. 282-288.
- 108. Мальгин В.Н. Алгоритмы решения задач прочности, устойчивости и колебаний оболочек вращения, основанные на уравнениях типа С.П. Тимошенко / В.Н. Мальгин // Методы решения задач упругости и пластичности. – Горький: Изд-во ГГУ, 1973. – №7. – С. 137-142.
- 109. Мальцев А.А. Динамика симметричных оболочечных конструкций / А.А. Мальцев, В.П. Мальцев, В.И. Мяченков // Прикл. пробл. прочн. и пластичности. Механика деформируемых систем. – Горький: Изд-во ГГУ, 1979. – С. 150-158.
- 110. Мальцев А.А. Некоторые задачи динамики составных оболочек вращения / А.А. Мальцев. – М.: Дис. на соиск. уч.ст.к.ф.-м. наук, 1980. – 158с.
- 111. Методы численного анализа волновых процессов в сплошных средах и тонкостенных конструкциях с учетом сопутствующих явлений. / В.Г. Баженов [и др.] // Нелинейные и тепловые эффекты при переходных волновых процессах. – Таллин, 1973– Т.1. – С. 135-164.
- 112. Минченя В.Т. Расчет упругих постоянных материала по собственным частотам колебаний круглой пластины / В.Т. Минченя, Д.А. Степаненко, Е.Н. Юрчик // Вестник БНТУ, 2009. – № 6. – С. 37-42.
- 113. Митчелл Э. Метод конечных элементов для уравнений с часными производными. Пер. с англ. / Э. Митчелл, Р. Уэйт. М.: Мир, 1981. 216 с.

- 114. Моргун С.А. Экспериментальное исследование свободных колебаний лопаток газотурбинного двигателя / С.А. Моргун, А.С. Каиров // Методи розв'язання прикладних задач механіки деформованого твердого тіла. Дніпропетровськ: Ліра, 2011. №12. С. 224-229.
- 115. Мяченков В.И. Исследование поведения симметрично нагруженных упругих оболочек вращения при динамическом нагружении с помощью метода прямых / В.И. Мяченков / Труды VIII всес. конф. по теории оболочек и пластин. – М.: Наука, 1973. – С. 531-535.
- 116. Мяченков В.И. Расчет составных оболочечных конструкций на ЭВМ. Справочник / В.И. Мяченков, И.В. Григорьев. М.: Машиностроение, 1981. – 212 с.
- 117. Нигул У.К. Нелинейные и линейные переходные процессы деформации термоупругих и упругих тел / У.К. Нигул, Ю.К. Энгельбрехт. – Таллин: Изд-во АН ЭССР, 1972. – 176 с.
- 118. Нигул У.К. Сопоставление результатов анализа переходных волновых процессов в оболочках и пластинах по теории упругости и приближенным теориям / У.К. Нигул // ПММ, 1969. – Т.33, №2. С. 308-322.
- 119. Новожилов В.В. О погрешности одной из гипотез теории оболочек /
 В.В. Новожилов // ДАН СССР, 1943. Т.38, №5-6. С. 174-179.
- 120. Новожилов В.В. О погрещности гипотез Кирхгофа Лява в теориии оболочек / В.В. Новожилов, Р.М. Финкельштейн // ПММ, 1943. – Т.7, №5. – С. 323-330.
- 121. О спектре собственных колебаний набора микро- или наносфер, закрепленных на упругой подложке / Еремеев В.А. [и др.] // Доклады Академии наук, 2007. – Т.417, №6. – С. 1-5.
- 122. Об одном методе определения собственных частот упорядоченной системы нанообъектов / Еремеев В.А. [и др.] // Журнал технической физики, 2007. – Т.77, №1. – С. 3-8.
- 123. Об определении собственных частот нанообъектов / Еремеев В.А. [и др.]
 // Доклады Академии наук, 2006. Т.406, №6. С. 756-759.

- 124. Образцов И.Ф. Метод конечных элементов в задачах строительной механики летательных аппаратов: Учеб. пособие для студентов авнац. спец. вузов / И.Ф. Образцов, Л.М. Савельев, Х.С. Хазанов. – М.: Высш. шк., 1985. – 392 с.
- 125. Ониашвили О.Д. Некоторые динамические задачи теории оболочек / О.Д. Ониашвили. М.: Изд-во АН СССР, 1957. 200 с.
- 126. Определение собственных частот эллиптической оболочки постоянной толщины методом конечных элементов / В.Д. Будак, А.Я. Григоренко, М.Ю. Борисенко, Е.В. Бойчук // Мат. методи та фіз.-мех. поля, 2014. 57, № 1. С. 145-152.
- 127. Определение собственных частот эллиптичесой оболочки постоянной толщины методом конечных элементов / В.Д. Будак, А.Я. Григоренко, М.Ю. Борисенко, Е.В. Бойчук // Тези доповіді VII Міжнародної наукової конференції, присвяченої 90-річчу від дня народження академіка НАН України Олександра Сергійовича Космодаміанського, 11-14 червня 2013р., Донецьк Мелекіно, 2013. С. 75.
- 128. Паймушин В.Н. Классические и неклассические задачи динамики трехслойных оболочек с трансверсально-мягким заполнителем / В.Н. Паймушин // Мех. композит. матер, 2001. – Т.37, № 3. – С. 289-306.
- 129. Панин Е.А. Основы тензометрии двигателей летательных аппаратов: Метод, указания / Е.А.Панин // Самар. гос. Аэрокосм. ун-т, 2004. – 39 с.
- 130. Петрушева И.И. Свободные колебания упругой многослойной цилиндрической оболочки / И.И. Петрушева // Вестник КГТУ, 2003. № 3. С. 8-17.
- 131. Применение метода конечных элементов в задачах динамики пластин и оболочек / А.С. Вольмир [и др.] // Применение численных методов в строительной механике корабля. – Л.: Судостроение, 1976. – С. 32-40.
- 132. Применение численных методов в строительной механике корабля / В.Г. Баженов [и др.]. – Л.: Судостроение, 1979. – №239. – С. 176-182.
- 133. Про вільні коливання циліндричних оболонок кругового та некругового

поперечного перерізу при різних граничних умовах / В.Д. Будак, О.Я. Григоренко, М.Ю. Борисенко, О.В. Бойчук // Вісник Запорізького національного університету, серія фізико-математичні науки, 2015. – №2. – С. 20-28.

- 134. Пшеничное Г.И. Теория тонких упругих сетчатых оболочек и пластин / Г.И. Пшеничное. М.: Наука, 1982. – 352 с.
- 135. Рассказов А.О. К теории колебаний многослойных ортотропных оболочек / А.О. Рассказов // Прикладная механика, 1977. – Т.13, № 8. – С. 23-29.
- 136. Расчеты машиностроительных конструкций методом конечных элементов: Справочник / В.И. Мяченков [и др.]. М.: Машиностроение, 1989. 520 с.
- 137. Резонансная акустическая спектроскопия твердых тел. / А.И. Коробов [и др.] // Методическая разработка спецпрактикума кафедры акустики. М.: Физический факультет МГУ, 2012. 30 с.
- 138. Романько В.Н. Определение собственных частот и декрементов затухания методом авторегрессионного спектрального анализа / В.Н. Романько, Э.А. Корецкий, В.В. Скляров // Український метрологічний журнал, 2012 № 2. С. 4-9.
- 139. Рудаков К.Н. FEMAP 10.2.0. Геометрическое и конечно-элементное моделирование конструкций / К.Н. Рудаков. К. НТУУ «КПИ», 2011. 317 с.
- 140. Сабодаш П.Ф. Применение метода пространственных характеристик к решению осесимметричных задач по распространению упругих волн / П.Ф. Сабодаш, Р.А. Чередниченко // ПМТФ, 1971. – № 4. – С. 101-109.
- 141. Сальников Г.М. К вопросам об определении собственных частот колебаний оболочки сложных форм со свободными краями / Г.М. Сальников, А.Г. Зенуков // Изв. Вузов. Авиац. Техника, 1967– №4. – С. 40-42.
- 142. Самарский А.А. Разностные схемы газовой динамики / А.А. Самарский, Ю.П. Попов // М.: Наука, 1975. – 351 с.
- 143. Сахаров А.С. Моментная схема конечных элементов (МСКЭ) с учетом жестких смещений / А.С. Сахаров // Сопротивление материалов и теория

сооружении. – К.: Будивельник, 1974. – №24. – С. 147-156.

- 144. Свободные колебания элементов оболочечных конструций // Григоренко Я.М. [и др.]. К.: Наукова Думка, 1986. 170 с.
- 145. Слепов Б.И. Колебания и устойчивость эллиптической оболочки / Б.И. Слепов // Изв. АН СССР, «Механика и машиностроение», 1964. №3. С. 144-146.
- 146. Собственные колебания нанотрубок / Еремеев В.А. [и др.] // Доклады Академии наук. 2007. Т. 415, № 5. С. 605-610.
- 147. Статика и динамика тонкостенных оболочечных конструкций / А.В. Кармишин [и др.]. М.: Машиностроение, 1975. 376 с.
- 148. Стренг Г. Теория метода конечних элементов. Пер. с англ. / Г. Стренг, Дж. Фикс – М.: Мир, 1977. – 400 с.
- 149. Сьюэлл Ж. Исследование колебаний эллиптических цилиндрических оболочек / Ж. Сьюэлл, К. Пьюси // Ракетная техника и космонавтика, 1971. – Т.9, №6.
- 150. Теоретические основы и конструирование численных алгоритмов задач математической физики / Н.Н. Анучина [и др.] М.: Наука, 1979. 295 с.
- 151. Тимошенко С.П. Колебания в инженерном деле / С.П. Тимошенко, Д.Х. Янг, У. Уивер.; пер. с англ. Л.Г. Корнейчука. – М.: Машиностроение, 1985. – 472 с.
- 152. Ткач М.Р. Автоматизация определения собственных частот и форм колебаний элементов турбин малой мощности / М.Р. Ткач, Ю.Г. Золотой, Д.В. Довгань, И.Ю. Жук // Авиационно-космическая техника и технология, 2013 – №9(106). – С. 242-248.
- 153. Ткач М.Р. Исследование форм собственных колебаний элементов ГТД методом голографической интерферометрии в реальном времени / М.Р. Ткач, Ю.Г. Золотой, Д.В. Довгань, И.Ю. Жук // Авиационно-космическая техника и технология, 2011 №8(85). С. 51-56.
- 154. Ткач М.Р. Определение форм собственных колебаний элементов ГТД в реальном времени методом электронной спекл-интерферометрии /

М.Р. Ткач, Ю.Г. Золотой, Д.В. Довгань, И.Ю. Жук // Авиационно-космическая техника и технология, 2012 – №8(95). – С. 203-207.

- 155. Ткач М.Р. Повышение точности вибродиагностики голографической интерферометрией рабочих лопаток компрессоров ГТД в условиях резонансной вибрации / М.Р. Ткач, Ю.Г. Золотой, Д.В. Довгань // Авиационно-космическая техника и технология, 2010 №8(75). С. 48-54.
- 156. Томсон У. Трактат по натуральной философии / У. Томсон, П.Г. Тэт. Ижевск: РХД, 2010. С. 572-592.
- 157. Феодосьев В.И. Об одном способе решения нелинейных задач устойчивости деформируемых систем / В.И. Феодосьев. Прикл. матем. и механика, 1963. – Т.27, №2. – С. 265-274.
- 158. Филин А.П. Современные проблемы использования ЭВМ в механике твердого деформируемого тела / А.П. Филин. Л.: Стройиздат, 1974. –73 с.
- 159. Филиппов А.П. Колебания цилиндрических оболочек / А.П. Филиппов. // Прикл. мат. и мех., 1937 Т.1 С. 177.
- 160. Шалабанов А.К. Исследование высокочастотных колебаний цилиндрических оболочек на основе двух методов голографическои интерферометрии / А.К. Шалабанов // Исслед. по теор. пластин и оболочек, 1979. – №14. – С. 184–190.
- 161. Шалабанов А.К. Исследование собственных колебаний конических оболочек теоретико-экспериментальным методом / А.К. Шалабанов // Исслед. по теор. пластин и оболочек, 1981. – №16. – С. 197–202.
- 162. Alspaugh D.W. Modes and frequencies of pressurized conical shells /
 D.W. Alspaugh, J.L. Bogdanoff, J.E. Goldberg // Journal of Aircraft, 1964. –
 №1. C. 372-374.
- 163. Arnold R.N. The flexural vibration of thin cylinders / R.N. Arnold,
 G.B. Warburton // Proc. Inst.Mech.Engrs., 1953. Vol. 167 A, № 1. P. 62-80.
- 164. Aron H. Das Gleichgewicht und die Bewegung einer unendlich dunnen, beliebig gekrummten elastischen Shale / H. Aron // J. Reine und Angew. Match., 1874. – №78. – P. 136–173.

- 165. Baron M.L. Tables for frequencies and modes of free vibration of infinitely long thin cylindrical shells / M.L. Baron, H.H. Bleich // J. Appl. Mech., 1954. Vol.21, № 2. P. 178-188.
- 166. Basset A.B. On the exention and flexure of cylindrical and scherical thin elastic shells / A.B. Basset // Phil Trans. Roy. Soc. London, 1891. №181. P. 430-480.
- 167. Cohen G.A. Computer Analysis of Asymmetrical Deformation of Orthotropic Shells of Revolution / G.A. Cohen // AIAA Journal, 1964, Vol.2, №5. P. 932-934.
- 168. Cohen G.A. Numerical Integration of Shells Equations Using the Field Method / G.A. Cohen // Trans. ASME, 1974. Vol.41, №1. P. 261-266.
- 169. Cosserat E. Theorie des Cofps Deformables / E. Cosserat. Paris, 1909. 226 p.
- 170. Elsbernd G.F. The vibration of non-circular cylindrical shells with initial stresses / G.F. Elsbernd, A.W. Leissa // The Journal of Sound and Vibration, 1973, – Vol.29, №3. – P. 309-329.
- 171. Ericsen J.L. Exact theory of stress and strain in rods and shells / J.L. Ericsen,
 C. Truesdell // Arch. Rat. Mech. Anal., 1958. №1. P. 259–323.
- 172. Goldberg J.E. Computer Analysis of Shells / J.E. Goldberg // In: Proceedings of Symposium of the Theory of Shells. Ed. D. Muster Univ. of Houston, Texas, 1967. – P. 3-22.
- 173. Greenspon J.F. Vibration of thick cylindrical shells / J.F. Greenspon // J. Acoust. Soc. Amer, 1959. Vol.31, №12. P. 1682-1683.
- 174. Grigorenko Ya.M. Solving the Stress Problem for Hollow Cylinders with Corrugated Elliptical Cross Section / Ya.M. Grigorenko, L.S. Rozhok // Int. Appl. Mech., 2004 – Vol.40, №2. P. 169-175.
- 175. Honlinear Dynamic Analysis of Shells of Revolution by Matrix Displacement Method / J.A. Stricklin [et al.] // AIAA J., 1971. – Vol.9, №4. – P. 629-636.
- 176. John L. Sewall. An experimental and analytical vibration study of elliptical cylindrical shells / John L. Sewall, William M. Thompson, Christine G. Pnsey // NASA TN D–6089, 1971. – 81 p.

- 177. Kalnins A. Analysis of Shells of Revolution Subjected to Symmetrical and Hon-symmetrical Loads / A. Kalnins // Trans. ASME, 1964. – Vol.3, №3, – P. 467-476.
- 178. Kalnins A. Effect of Bending on Vibration of Spherical Shells / A. Kalnins //
 J. Acoust. Soc. Am., 1964. Vol.3, №1. P. 74-81.
- 179. Lamb H. On the deformation of an elastic shell / H. Lamb // Proc. London Math. Soc., 1890. №21. P. 119-146.
- 180. Leissa A.W. Vibration of Shells / A.W. Leissa // NASA SP-288: US Government Printing Office, Washington DC, 1973. – 438 p.
- 181. Lindholm U.S. Abramson H.N. Breathing vibrations of a circular cylindrical shell with an internal liquid / U.S. Lindholm, D.D. Kana, H.N. Abramson // J. Aeronautical Sciences, 1962. – Vol.29. – P. 1052-1059.
- 182. Love A.E.H. A Treatise on the Mathematocal Theory of Elasticity. / A.E.H. Love // Cambridge, 1893. – 327 p.
- 183. Love A.E.H. The small free vibrations and deformation of a thin elastic shell /
 A.E.H. Love // Phil. Trans. Roy. Soc. London, 1888. №179. P. 491-546.
- 184. Markus S. The mechanics of vibrations of cylindrical shells / S. Markus –
 Elsevier, 1988. 159 p.
- 185. Mc Daniel T.J. Dinamics of cylindrical shells with variable curvature / T.J. Mc Daniel, J.D. Logan // The Journal of Sound and Vibration, 1971. Vol.19, №1. P. 39-48.
- 186. Natural modes and frequencies of a thin clamped–free steel cylindrical storage tank partially filled with water: FEM and measurement / T. Mazch [et al.] // J. Sound Vib., 1996. – Vol.193, №3 – P. 669-690.
- 187. Pellicano F. Linear and Nonlinear vibration of shells / F. Pellicano // 2nd International Conference on Nonlinear Normal Modes and Localization in Vibration Systems, Samos, June 19-23, 2006. – P. 1-12.
- 188. Qatu M.S. Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells / M.S. Qatu // Appl. Mech. Rev., 2002. – Vol.55. – P. 415-434.

- 189. Quantitative elastic-property measurements at the na-noscale with atomic force acoustic microscopy / D. C. Hurley [et al.] // Advanced Engineering Materials, 2005. – Vol.7. – P. 713-718.
- 190. Soedel W. Vibrations of Shells and Plates / Soedel W. New York: Marcel Dekker, Inc. 3rd edition, 2005. 586 p.
- 191. Timoshenko S.P. Theory of plates and shells / S.P. Timoshenko // New York. Mc Graw-Hill, 1940. – 440 p.
- 192. Yu Y.Y. Free vibration of thin cylindrical shells having finite length with freely supported and clamped edges / Y.Y. Yu // J. Appl. Mech., 1955. – Vol.22, №4. – P. 547-552.